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Conference Director’s Report

Welcome to the Sixth Australian Conference on Mathematics and Computers in Sport. This year we
return to Bond University after the successful Fifth Conference in 2000 held in Sydney because of the
Olympic Year in that city. It is a pleasure to renew acquaintances with one of our principal speakers,
Ray Stefani who was at the First Conference in 1992, and has been collaborating with Steve Clarke
from Swinburne for many years now. Our second principal speaker, Steve Gray from Queensland, will
add a new dimension to the Sixth Conference with his interest in the economical aspects of sport.
Graeme Cohen (now retired from UTS) is our third principal speaker, but he and Tim Langtry have
once again taken over the responsibilities of producing the printed Proceedings. I thank Graeme and
Tim for relieving me of this major task.

The conference has once again attracted academics from New Zealand, the United Kingdom, the
United States and Canada. I welcome them all, including many familiar faces. I hope that you all
find the conference rewarding in many aspects, including the content and presentation of the talks, the
many discussions that are generated, and the close social contact with like-minded academics. We now
have a website www.anziam.org.au/mathsport due to Elliot Tonkes, who is the webmaster. This site
contains information about this and all previous conferences.

All the papers in these Proceedings have undergone a detailed refereeing process. I am indebted to
the referees for their time and comments to improve the quality of all papers. The Proceedings begin
with the papers of our principal speakers, followed by the contributed papers in alphabetical order
of author, or first author. The Proceedings conclude with an abstract —the paper was accepted for
presentation but was received too late to be submitted to the full refereeing process.

Neville de Mestre
June 2002
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CRICKETING CHANCES

G. L. Cohen
Department of Mathematical Sciences
Faculty of Science
University of Technology, Sydney
PO Box 123, Broadway
NSW 2007, Australia

graeme.cohen@uts.edu.au

Abstract

Two distinct aspects of the application of probabilistic reasoning to cricket are considered here.

First, the career bowling figures of the members of one team in a limited-overs competition are
used to determine the team bowling strike rate and hence the probability of dismissing the other
team. This takes account of the chances of running out an opposing batsman and demonstrates
that the probability of dismissing the other team is approximately doubled when there is a good
likelihood of a run-out.

Second, we show that under suitable assumptions the probability distribution of the number of
scoring strokes made by a given batsman in any innings is geometric. With the further assumption
(which we show to be tenable) that the ratio of runs made to number of scoring strokes is a constant,
we are able to derive the expression (A/(A + 2))*/? as the approximate probability of the batsman
scoring at least ¢ runs (¢ > 1), where A is the batsman’s average score over all past innings.

In both cases, the results are compared favourably with results from the history of cricket.

1 Introduction

In an excellent survey of papers written on statistics (the more mathematical kind) applied to cricket,
Clarke [2] writes that cricket “has the distinction of being the first sport used for the illustration of
statistics”, but: “In contrast to baseball, few papers in the professional literature analyse cricket, and
two rarely analyse the same topic.”

This paper analyses two aspects of cricket. The first is an apparently novel investigation of bowling
strike rates to determine the probability of bowling out the other team in one-day cricket. The likelihood
of running out one or more of the opposing batsmen is then incorporated for greater accuracy, and leads
to the useful conclusion that the probability of dismissing the other team is approximately doubled when
there is the likelihood of at least one run-out. These ideas were developed in the papers Cohen [4, 5],
and are presented here using an improved model and additional comments. (The opportunity is also
taken to make some minor corrections to the earlier papers.)

The second aspect, quite distinct from the first and not previously written up, is a further discussion
of a topic described in Clarke [2]. It concerns the distribution of scores in the traditional game. Rather
than seek directly a probability distribution for the number of runs scored by a particular batsman,
we derive instead the distribution of the number of scoring strokes. Scoring strokes are related to the
number of runs scored by assuming the ratio of these quantities to be (approximately) constant. Having
a probability distribution for the number of scoring strokes then allows the probability to be determined
of a batsman scoring a century, say, even if he has not previously made such a score.
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2 An application of bowling strike rates

We begin by showing that the strike rates of the bowlers on one team allow an estimate to be made
of the probability of getting an opposing batsman out in some manner that is credited to the bowler
(so we exclude run-outs for the moment). For one-day cricket, where there is a limit to the number of
balls to be bowled in an innings, this can be used to obtain the probability of getting the whole team
out. When we include the possibility of run-outs, we get a much better estimate for the probability of
dismissing the other side, as confirmed by comparisons with actual results from cricket’s World Cup.

Let b and w stand, respectively, for the number of balls bowled by a certain bowler (excluding wides
and no-balls) and the number of wickets taken from his bowling in a season, or in his career, or against
a particular team, say. Then that bowler, for our purposes, has a strike rate given by b/w. If w =0
(which is hardly likely, for our purposes) then the bowler is deemed not to have a strike rate. A bowler’s
strike rate, along with his average and his economy rate (neither of which is used here by us), are in
common use when analysing the effectiveness of various bowlers; the better bowler has the smaller strike
rate. The reciprocal of the strike rate can be interpreted as the probability that the bowler subsequently
takes a wicket with each ball bowled.

For a complete team, suppose we have n bowlers so that, in one-day competition, 5 < n < 11. Let
their strike rates based on previous experience be s, for k = 1, ..., n. If the kth bowler is to bowl
by balls in a coming match (excluding wides and no-balls), then experience suggests he will take wy,
wickets, where

wk:b—k, fork=1,...,n.
Sk
Let B be the total number of balls to be bowled by that team in the match (excluding wides and
no-balls), and let W be the total number of wickets taken. Then

n n n by

B = b = L, — _A
Z k and w Z Wy s
k=1 k=1 k=1

and the team’s strike rate S for that match may be predicted to be

B n n bk:
S===>b /> %, (1)
oo =1 °k
This is a weighted harmonic mean of sy, ..., s,, the weights being by, ..., by,.

For example, if four bowlers are to bowl ten overs each, and two others five overs each, then b; =
:b4:60, b5:b6 :30, and

10
2 2 2 2 1 1°
-t —+—4+— 4+ — 4+ —
S So S3 S4 S5 56

S =

A bowling combination that allows S < 30, since B < 300 and W = 10 in a completed innings, would
be most desirable, though rarely achievable in practice.

Typically good individual strike rates satisfy 25 < s < 50. If selectors were to choose only that
combination of bowlers that allows S to be least, then they would accomplish this by taking the five
bowlers with smallest strike rates. However, economy rates or bowling averages and batting and “all
round” skills would also all be taken into account, and the captain has his tactical considerations, so it
is usually necessary to have a much more varied bowling attack. It would be useful to know then what
chances the various bowling combinations have of bowling the other side out.

The quantity p = 1/S represents wickets per ball during the opposing team’s innings of at most 50
overs and is the empirical probability with each ball of a bowler taking a wicket, by any of the means
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that allow a wicket to be credited to the bowler. The probability of the bowlers taking w wickets in 50
overs is
300 Cw
( > PR
w

where ¢ = 1 — p, on the assumption that each ball bowled is an independent event. It was argued in [4]
that the other team has not been bowled out if w < 9, so the probability of bowling them out is

9
300 Y
P=1-) ( " >p“’q3°° : (2)

w=0

A more detailed analysis is given in [4] in terms of the bowlers’ individual strike rates, but a numerical
argument there shows that, for practical purposes, it is sufficient to make use of (2).

However, because P, = E?ﬂozom (*99)pvg®®0~v, the use of (2) would seem to suggest that the rules
of the game in fact allow for ten or more wickets to be taken, but that the game is to be abandoned
after ten wickets, the others being defaulted. This whimsy is avoided with the following alternative
approach.

To bowl the other team out, ten wickets must be taken and this may be done in anything from ten
to 300 balls. If k balls are required, 10 < k < 300, then the tenth wicket must be taken with the kth
ball, and the first nine wickets with any of the first £ — 1 balls. No wicket is taken with the remaining
k — 10 balls. Hence the probability of bowling the other team out is

300 10 300
k—1 _ k—1
PFZ( 9 )pmqk 10:(5) Z( 9 )qk‘

k=10 k=10

It is reassuring to calculate that values of P; and P, are, for practical purposes, very close. They
agree to four decimal places for S up to 42. In fact, for integer values of S, the greatest difference
Py — P, is 0.00335, at S = 85. (Always, P; > P» since P, is, whimsically, the probability of taking ten
or more wickets in 300 balls.)

Coincidentally, the article [4] appeared just as the 1999 World Cup of one-day cricket was about
to get under way in England, and it was noticed by the science writer in The Times. He wrote a
column [12] describing the ideas above and giving his own calculations regarding the English team.
Two days later, on the morning of the first match in the World Cup and having seen the English article,
The Australian [16], in more journalistic style, prevailed upon the author to rank the twelve competing
teams in order of the probabilities of bowling their opponents out, even though bowling out the other
team does not ensure a win. These probabilities were compared with odds then being offered for each
team, and so the ideas in [4] were promoted to a level somewhat above the original conception. (The
author’s top six ranked teams included five that made the Super Six, who then played off to determine
the finalists. This is praiseworthy but not relevant.)

The calculation of S in (1) is described above as being for predictive purposes, based on bowlers’
strike rates prior to a match. It may subsequently be compared with the strike rate actually attained in
an innings, calculated as the number of balls bowled (not including wides and no-balls) divided by the
number of wickets credited to the bowlers. It seems to be standard, if perhaps wrong, that wides and
no-balls are not included when determining bowlers’ strike rates, so we follow that practice. Moreover,
a team’s actual overall bowling performance may be based on calculations made following a series of
games, such as in the World Cup. It was apparent to the author that the probabilities based on the
model in (2) and actual games played in the 1999 World Cup, underestimated the proportion of times
that each team in fact bowled out its opponents.

One presumed reason for this was clear: “bowling out” the opponents (as we will use the term) is
not the same as “dismissing” them, since the latter includes wickets lost by batsmen who are run out.
These are not credited to the bowler. In [5], the methods of [4] were made more realistic by allowing
for run-outs, including the possibility that run-outs may occur off wides and no-balls.
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World Good Bad Bowled Run Teams
Cup | Matches balls balls out out dismissed

(@) B O (%) () ©)

1987 27 15413 363 321 64 12
1992 37 20206 661 439 67 18
1996 35 19461 508 411 63 14
1999 42 22721 1218 549 49 27
Totals 141 77801 2750 1720 243 71

Table 1: Data from previous four World Cups.

All match results from the preceding four World Cups (in the years 1987, 1992, 1996 and 1999) were
scanned to arrive at estimates for the probability of a run-out with each ball bowled and the average
number of wides and no-balls in a 50-over innings. (The World Cups prior to 1987 were 60 overs a
side, and not considered for that reason, although the model could be easily adjusted to take this into
account.)

The resulting data are given in Table 1. We use the term “good ball” for any delivery not resulting
in a wide or no-ball, and “bad ball” for a wide or no-ball. Wickets resulting from good balls, but not
run-outs, are credited to the bowler. A batsman can be run out from any ball, good or bad. There are
other means of getting out off bad balls (such as being stumped off a wide, in which case the wicket is
credited to the bowler), or off good balls with the result not credited to the bowler, but these are very
rare and ignored for our purposes. The columns in Table 1 are labelled «, 3, ..., ( for later use.

The 9th and 13th matches in the 1992 World Cup were abandoned due to rain, and the 5th and
14th matches in the 1996 World Cup were forfeited. These have not been included in Table 1. The 16th
match in 1996 was replayed after the first attempt was washed out, and only the replayed match has
been included. It is possible that some of the figures for balls bowled, both good and bad, in Table 1
may be off by a few from the true numbers, since, for example, umpires’ errors (such as allowing a few
seven-ball overs) and rule changes for the 1999 World Cup that allowed penalty runs have not always
been easy to take into account. We have used the scorecards from CricInfo at www.cricket.org. “Bowled
out” refers to wickets credited to bowlers, and in this table includes batsmen who retired hurt or were
absent ill, so that they may be taken into account in determining overall bowling strike rates.

Suppose, in a completed innings of 50 overs, there are y bad balls bowled. Re-define B by B = 300+y,
the total number of balls bowled, so that the probability of any particular ball being good is 300/B = g,
say. Since the strike rate S is based only on good balls bowled, we can give the actual probability of a
bowler taking a wicket as gp, where p = 1/5, as before. Let r be the probability of a run-out with each
ball bowled. Then the probability that the bowlers take w;, wickets, and that a further w, batsmen are
run out, follows a multinomial distribution. It is

’ —wp —
<wb wy, B —wp —w ) (gp)**r*" (1 —gp — T)B wp —wWr
B!

= (gp)rr"(1—gp—r

)B—wb—wr
wplw,! (B —wp — w,.)!

)

where, in practice, 0 < w, + w,. < 10, assuming that each ball bowled is an independent event. If
wp + w, < 9, then the team has not been dismissed, so the probability of dismissing the other side is

B!

P=1- : wopwn (1 gp —
; > ol (B =y w2 (L= gp =)
0<wp+w, <9

B—wp,—w,

When y = 0 and » = 0, so that ¢ = 1 and w, = 0, this reduces to the result in (2) (with the
understanding that then r*~ = 1).
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Although numerically accurate, this formula has the same conceptual drawback as for P;. Instead,
we may argue as follows.

Let w be the number of wickets taken by the bowlers, 0 < w < 10, so that 10 — w is the number
of run-outs. The taking of wickets and the bowling of balls are considered to be independent events,
except that a wicket must be taken with the last of k balls bowled, 10 < k < B. Then the probability
of dismissing the other side is

Py = wg (1) o kfw ("5 e ®

When 7 = 0, we must have only the summand with w = 10 and then, as above, must interpret 0° as 1.
With y = 0, then P, reduces to the expression for P».

We can now demonstrate that this model approximates well the actual results from the four World
Cups.

World Cup S r y' In P

1987 48.016 0.00406  7.07 0.222 0.220
1992 46.027 0.00321  9.81 0.243 0.222
1996 47.350 0.00315  7.83 0.200 0.199
1999 41.386  0.00205 16.08 0.321 0.268

Combined | 45.233 0.00302 10.60 0.252 0.229

Table 2: Actual proportion (II) of teams dismissed and predicted probability (P) of dismissing a team,
given Cup bowling strike rate (S), run-outs per ball (r), and average number of wides and no-balls (y').

From the data given in Table 1, we may calculate combined bowling strike rates S = 3/ for each
World Cup, the proportion r = €/(3+ ) of run-outs, and the average number y’ = 300~/ of bad balls
in a 50-over innings. We also have from Table 1 the actual proportion II = (/(2a) of teams dismissed.
We put p = 1/S, r and y (equal to y’, rounded to the nearest integer) into (3) to obtain the values
P = P, in Table 2. Compare the values of P and II.

Notice that the values for r in Table 2 show that there are on average about three run-outs per 1000
balls in world class one-day cricket, which equates to about one per innings of 50 overs. The values
for y' show that there are, say, seven to ten wides or no-balls altogether in a 50-over innings. (The 1999
World Cup seems to be exceptional in the latter regard—this was the time when accusations of corrupt
practice in cricket were rife and in many cases subsequently shown to be justified, and perhaps here we
see some evidence for the accusations.)

Finally in this section, we give Table 3. For team bowling strike rates .S from 20 to 62, incremented
by 2, and three values (0.002, 0.003 and 0.004) for the probability r of a run-out with each ball (pick
the probability that matches the team’s fielding skills or the opponents’ lapses in running), we give the
probability of dismissing the other team. We have taken y = 10, although it turns out that, whether
y = 0 or y = 20, the computed values are rarely affected even in the second decimal place. (Because Py is
used rather than Ps, Table 3 differs in a few entries, but not at all substantially, from the corresponding
table in [5].)

The first row of Table 3, with = 0, corresponds to the probability of dismissing the opponents if
run-outs are not to be considered. This should still be seen as important to assist a captain or selector
to estimate the ability of their chosen team to bowl out the opponents (the theme of the paper [4]), as
other considerations would not then be taken into account. Perhaps of more interest is a comparison
between the entries corresponding to 7 = 0 (no run-outs) and r = 0.003 (close enough to one run-out in
300 balls) for 46 < S < 60 (a range for the team bowling strike rate that would be common in practice).
They may be interpreted as showing that the probability of dismissing the other team is approximately
doubled if there is a good likelihood of a run-out.
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r S
20 22 24 26 28 30 32 34 36 38 40
0 0.93 0.88 0.80 0.72 0.63 0.54 0.46 0.39 0.32 0.27 0.22
0.002 | 095 091 0.85 0.78 0.70 0.62 0.54 0.47 041 0.35 0.30
0.003 | 096 0.92 0.87 0.80 0.73 0.66 0.58 0.51 0.45 0.39 0.34
0.004 | 097 093 0.88 0.82 0.76 0.69 0.62 0.55 0.49 0.43 0.38
r S
42 44 46 48 50 52 54 56 58 60 62
0 0.18 0.15 0.12 0.10 0.08 0.07 0.06 0.04 0.04 0.03 0.02
0.002 | 0.25 0.21 0.18 0.15 0.13 0.11 0.09 0.08 0.07 0.06 0.05
0.003 | 0.29 0.25 0.22 0.18 0.16 0.14 0.12 0.10 0.09 0.07 0.06
0.004 | 0.33 0.29 0.25 0.22 0.19 0.17 0.15 0.13 0.11 0.10 0.08

Table 3: Probability of dismissing the other team, given the probability of a run-out (r) and the team
bowling strike rate (S), and assuming 10 wides or no-balls are bowled per 50 overs.

There was further newspaper interest in these ideas in January 2001, culminating in an article [6]
in Sydney’s Daily Telegraph. That article included also a description of the main results in de Mestre
and Cohen [10], and it was reprinted with a little more mathematical detail in Cohen and de Mestre [7].
The newspaper article included probabilities of dismissing the other team for the triangular one-day
series about to commence between Australia, Zimbabwe and the West Indies. The predictions were
acceptably accurate, as detailed in [7].

3 An application of batting averages

As we have indicated above, the work of this section is quite distinct from the preceding work. It will be
convenient to use a similar notation to before, but now from a batsman’s point of view. For example,
we will use b for the number of balls faced by a particular batsman, rather than the number bowled by
a particular bowler.

3.1 The distribution of scoring strokes

In cricket, a batsman’s average is the number of runs he has scored divided by the number of times he
was out. If a tail-end batsman scores five in each of ten innings in a season and is not out nine times,
then he finishes the season with an average of 50. For good reason, this is not seen to be a properly
representative score.

It seems that there are two separate questions that people expect the one batting average to answer.

e First, how good is the batsman? What score would we expect of him if he were allowed to bat
on, leaving the field for the final time only when he is given out in a standard manner?

e Second, what score do we expect of him given the possibilities also of his retiring hurt, or running
out of batting partners, or having the team’s innings declared closed or the match interrupted for
some reason such as rain, in all of which cases he would remain not out?

We will try to answer both questions.

At least two papers have attempted to determine more significant single measures of batting per-
formance, generally being more intent on answering the first of the above questions. Danaher [8] used
analogies with survival analysis to find an estimate of a cricketer’s “true but unknown batting average”
based on the product limit estimator. Kimber and Hansford [14] also adopted an approach “akin to
that used in reliability and survival analysis”, and also based on product limit estimation, to arrive at
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a different nonparametric estimator. The latter gives values generally much closer to the traditional
average than Danaher’s estimator (with both always giving smaller values), and both have the property
that the fewer the number of not-outs, the closer their estimator is to the traditional average. On the
other hand, Davis [9, pages 96-98], argues from an empirical viewpoint for the worth of the traditional
average.

It seems reasonable that the score you might expect a batsman to attain would be his “true average”,
based on all relevant previous innings. To define this term, we take data pertaining to a particular
batsman over a particular period, such as his career or the previous season, or in a particular position,
or against a particular team. Let i, n, w and r be, respectively, the number of innings, the number
of not-out innings, the number of dismissals, and the number of runs scored. Then w = i —n. The

batsman’s traditional and true averages are
T T
B = ) A = =,
w i

respectively. Notice that .
A=2p="""p, (4)
i i

so that, for overall career results, say, the true average may be determined from the usual published
batting statistics. Of course, A = B when n = 0.

We will justify our use of the term “true average” by obtaining in a theoretical fashion the probability
distribution of the number of scoring strokes and, based on this, showing that the expected value of the
batsman’s score (in the statistical sense) equals this true average.

The same approach will allow us to find the probability of the batsman making 100 runs, or any
other score. Thus we answer the intriguing question: how do you estimate a batsman’s probability of
making a century if he has not yet made one? We will see that our probability compares well with the
actual frequency of century scores by batsmen who have made a few centuries.

Our method relies on the new concept of the strike constant. This is the ratio of runs made to
number of scoring strokes and its introduction may be viewed as a device to serve our end: it is a first
approximation to a comparison of runs made and scoring strokes which indeed (as we will see) leads to
plausible and testable results. An investigation of this ratio for a large number of Sydney grade cricketers
by Cochran [3] came up with the value 2.16, with standard deviation 0.25, for traditional cricket,
and 1.82, standard deviation 0.43, for limited-overs cricket. (He also investigated indoor cricket: ignoring
runs subtracted for loss of wicket, the mean strike constant was 2.08 with standard deviation 0.41.)

We consider the main application of this work to be to the traditional form of cricket. Strike
constants for individual cricketers over a small number of matches might range between 1.9 and 2.4,
say, but this will be seen in any case to have little effect on the final calculations.

We will show that, subject to certain assumptions, the number of scoring strokes follows a geometric
distribution. The distribution of runs scored is related to this through the strike constant. The possibil-
ity that cricket scores are geometrically distributed goes back at least to the writings of Elderton [11].
Wood [15] gives further numerical evidence to support this. Both these papers are dismissed by Kim-
ber and Hansford [14] as “flawed because the authors treated not-out scores as if they were completed
innings”, despite the evidence of the data. The details are summarised by Clarke [2]. Inter alia, Clarke
states: “If a batsman scores only singles and his probability of dismissal is constant, his scores should
follow a geometric distribution, the discrete equivalent of the negative exponential.” This observation
appears to be based on a viewing of the empirical data, but will be a direct consequence of our work
below.

3.2 Expected values

In addition to the quantities i, n, w = i —n and r introduced above, let b and s be, respectively, the
number of balls faced and the number of scoring strokes made. We must have » > s > 0 and we will
assume that b >4 >n > 0. Then w > 0. Recall that A = r/i.
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We define

1
pw = Pr (the batsman’s innings ends, out or not out, with each ball faced) = >

qw =1— puw,
ps = Pr(the batsman makes a scoring stroke with each ball faced | the batsman’s

innings does not end with that ball) = 5 i o

qs =1 —ps.

These probabilities are considered to be constant throughout a subsequent innings.

Notice that we have made an assumption that no scoring stroke is made from the ball on which the
batsman’s innings ends (so that s < b — ). Therefore, we do not take into account the rare instance
in which the batsman makes at least one run and is then run out on the same ball while attempting
a further run, or the admittedly more common instance in which a captain declares an innings closed
following the batsman’s final scoring stroke.

In any period, the ratio of the number of runs obtained to the number of scoring strokes made is
considered to be constant. This is the simplification described above. The ratio is the strike constant,
denoted by x. Then

K= —.
S

Let the random variable X be the number of scoring strokes made by the batsman in a subsequent
innings, and let R be the score (number of runs) obtained. In order that X = k for integer k£ > 0, the
batsman must face 7 + 1 balls, for some j > k, scoring on k of these and having his innings end on the
(7 + D)th ball. (If the team’s innings ends or the batsman is run out while not facing, some number
of balls after last facing a ball himself, this is still effectively the case.) Whether or not he scores off
any of the first j balls bowled are considered to be independent events, and so the distribution of the &
scoring strokes among the first j balls bowled to him will be binomial(j, ps). Write Pr (X = k) for the
probability that the batsman makes k scoring strokes (k > 0), before being dismissed. (Later notations
will have a corresponding meaning.) Then

o0 .
. 7 .
=k

gt ! (@o )"
- . k)' qsq’u}

|
k! = (j
k k k
__ PsPulw  _ P ( Psw > _ pQ*
(1 - qSQw)kJrl 1- qsQw 1- qsquw ’
where
_ Pw ’ _ _PsQw 1—P
1- qsquw 1- qsquw

Thus the number of scoring strokes made follows a geometric distribution. (Notice, for example, that if
ps = 1 then this reduces to Pr (X = k) = ¢¥p,,, for k > 0.) Using the definitions of p,, and ps, we find
that .

i K A

its A+r’ Q= A+ kK
The expected number of scoring strokes is then easily determined, or it may be obtained as a
particular case from results in Johnson et al. [13]. We have

Q_A4
P Kk’

E(X) :ik-Pr(X:k):
k=0
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Then, since X = 0 if and only if R =0,
R
E(R):E(R|R>0)=E<X-Y ‘X>0> =E(kX | X >0)=xE(X)=A.

This is our theoretical justification of the use of the true average. For a batsman with no not-out innings
(n = 0), his expected number of runs will be the traditional average B.

It is well known, however, that the average is a very imprecise measure of the score you might expect
a batsman to achieve. A technical reason for this may be demonstrated as follows.

The geometric distribution, Pr (X = k) = PQ* for k > 0, has mean and variance

Q@ Q

px =E(X) = P ox = var (X) = P2

respectively (see [13]), from which ox = px/v/Q. We have ux = A/k, so

_A ek
ox = o A.

Then, for the variance of the batsman’s score, we have var (R) = var (kX ) = x%var (X), so that

/ K
orR=kox = A 1+Z.

The standard deviation of the number of runs scored will thus be a little greater than the expected
value of that number. Because of that, we cannot really expect the batsman to make anything very
close to his true average score at any appearance. We shall return later to this situation.

3.3 The probability of scoring a century (or a duck)

By “scoring ¢ runs”, we shall mean the usual notion of actually making ¢ or more runs, except below
when we give the probability of a duck (zero runs).
Writing d = | (¢—1)/k], where |-] denotes the floor (or greatest integer) function, we have, for ¢ > 1,

Pr(R>¢c)=1-Pr(R<c¢—1)=1-Pr(kX <ec—1)=1-Pr(X <d)

o] A d+1
_ _ _ d+1
= ZPr(X_k)_Q _<A+K> .
k=d+1

If k = 2, say, then these probabilities are equal for ¢ = 2m and for ¢ = 2m — 1, for any positive
integer m. In practice that should be considered as acceptable, especially for large ¢, and in theory (this
theory) it is unavoidable.

An application of the formula is given in Table 4. This gives in particular the number of century
scores and over-50 scores by the all-time top twenty Test batsmen (as at 7 February 2002; qualification:
at least 20 innings), and the estimates of these values resulting from our formula. (The referee lamented
that Adam Gilchrist was not on the list; by early May 2002, he was in fact fifth on the list with a
traditional average of 60.00.)

The first four columns from left to right in Table 4, following the batsman’s name, are a selection
of standard published data: the number of innings; the number of not-out innings; the number of runs
scored; and the traditional average (previously denoted by B). Then come values for our true average A,
which may be calculated from the data in the preceding columns using equation (4), and values of A4,,
which is a batsman’s “wicket-average” to be discussed below. Finally, there are, for each batsman,
the number of century scores (headed 100+); the expected values of these using the above probability
calculation multiplied by the number of innings; the number of scores of 50 or more (headed 50+ and
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Name Inn. | NO | Runs | Ave. A Aw 100+ | E(100+) || 50+ | E(50+)
DG Bradman 80 10 6996 | 99.94 87.45 | 85.04 29 25.8 42 45.5
RG Pollock 41 4 2256 | 60.97 || 55.02 | 54.43 7 6.9 18 16.8
GA Headley 40 4 2190 | 60.83 54.75 | 45.61 10 6.7 15 16.3
H Sutcliffe 84 9 4555 | 60.73 54.23 | 54.64 16 13.7 39 34.0
E Paynter 31 5 1540 | 59.23 49.68 | 48.31 4 4.3 11 11.6
KF Barrington 131 15 6806 | 58.67 || 51.95 | 50.37 20 19.8 55 50.9
EdeC Weekes 81 5 4455 | 58.61 55.00 | 54.88 15 13.6 34 33.2
WR Hammond 140 16 7249 | 58.46 51.78 | 46.19 22 21.0 46 54.3
SR Tendulkar 143 15 7419 | 57.96 51.88 | 48.85 27 21.6 57 55.5
GStA Sobers 160 21 8032 | 57.78 50.20 | 44.06 26 22.7 56 60.2
JB Hobbs 102 7 5410 | 56.95 53.04 | 53.34 15 16.0 43 40.4
CL Walcott 74 7 3798 | 56.69 51.32 | 51.03 15 10.9 29 28.5
L Hutton 138 15 6971 | 56.67 || 50.51 | 47.89 19 19.8 52 52.3
GE Tyldesley 20 2 990 | 55.00 49.50 | 47.22 3 2.8 9 7.4
MH Richardson 21 1 1088 | 54.40 51.81 | 50.75 2 3.2 10 8.1
DR Martyn 35 9 1413 | 54.35 || 40.37 | 35.88 4 3.1 9 10.4
CA Davis 29 5 1301 54.21 44.86 | 40.83 4 3.3 8 9.7
VG Kambli 21 1 1084 | 54.20 51.62 | 53.30 4 3.1 7 8.1
GS Chappell 151 19 7110 | 53.86 47.09 | 44.57 24 21.8 55 57.3
AD Nourse 62 7 2960 | 53.82 47.74 | 47.49 9 8.0 23 22.2

Table 4: The all-time top twenty Test batting averages, at 7 February 2002, with approximate expected
values of number of scores of 100 or more, or 50 or more (E (100+) and E (50+), respectively).

differing from the usual lists which give the number of scores from 50 to 99, inclusive); and their expected
values similarly calculated.

Unless it is possible to have access to the original score sheets, it is most unlikely that actual values
of k, the ratio over the past of runs made to number of scoring strokes, could be obtained. The easy
approach is to set £ = 2, and this was done in Table 4. (The expected values, whether we took x = 1.9,
2 or 2.1 were not appreciably different.)

A large proportion of the expected values in Table 4 are observed to match their actual values very
well, so that, in this case at least, the model fits the data acceptably. The table suggests that our model,
with k = 2, will allow reasonable predictions to be made.

Taking x = 2 allows a further simplification. By assuming that ¢ is even, as in the common cases

¢ =100 or ¢ = 50, we obtain
A c/2
P S | ——
2o~ () 6

and, if desired, this may be adopted as a useful approximation for all ¢ > 1.

The wicket-average A, in Table 4 is the average of only those innings in which the batsman was
out. (These values were obtained by going back to the lists of all Test scores, for each batsman.) This
information has been included to show that the true average and the wicket-average are in most cases
very close, as one would expect if a batsman averaged much the same in his completed innings as in
his not-out innings. However, the true average is greater in all but two cases, indicating that not-out
scores tend on average to be greater than completed innings. Sometimes this is emphatically so, as in
Headley’s case: his not-out Test scores were 102, 169, 270 and 7.

The point of tabulating A, is to give an example of other averages that might be determined for
more accurate predictions. Using equation (5) with A = A4,, and ¢ = 100 will give an estimate of the
chance of scoring a century, with the batsman getting out. (The earlier theory needs to be adjusted in
a minor way to allow for the different sample space: b, r and s now relate only to completed innings,
and ¢ in the definitions of p,, and ps must be replaced by w. Then, in particular, p,, is the probability
of the batsman losing his wicket, out, with each ball faced. The subsequent analysis would then refer
only to completed innings.)

We return now to the question of determining a more useful means of estimating a batsman’s future
score than simply giving the expected value. We will instead find “50% probability intervals” for the
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score, for differing values of A. That is, for each A, we will determine an approximate interval with the
property that the batsman would obtain a score in it with probability 0.5, with equal probabilities of
smaller or greater scores outside the interval.

We make use of (5). For a given probability p, the score ¢ required to ensure that Pr(R > c¢) = p is

obtained approximately by solving
A c/2
<A n 2) P

= 2log(l/p) (6)
log(1+ 2/A)
where the logarithms may be to any suitable base. Taking the ceiling value when p = 0.75 and the floor
value when p = 0.25, we obtain our approximate interval.

Examples of these intervals appear in Table 5. We have taken values of A from 10 to 65, incremented
by 5, and, in case the ghost of Sir Donald is watching, also A = 90. Notice that any sensible average
can be used. Thus, for Damien Martyn with A,, ~ 35 and A =~ 40 (see Table 4), we could say he has
a 25% chance of scoring 50 or more, getting out, but the same chance of scoring more than 56, out or
not out.

We obtain

batting average 10 15 20 25 30 35 40
50% probability interval | [4, 15] [5, 22] [7, 29] [8,36] | [9,42] | [11,49] | [12, 56]
batting average 45 50 55 60 65 e 90
50% probability interval | [14, 63] | [15, 70] | [17, 77] | [18, 84] | [19,91] [27, 126]

Table 5: A batsman with true batting average shown (not the traditional average) has probability 0.5
of making a score in the given interval, with equal probabilities of smaller or greater scores outside the
interval.

Using equation (6) with p = 0.5 allows us to use a batsman’s traditional average number of runs
scored to estimate his median number of runs scored. In fact, for A > 20, say, we have In(1+2/4) ~ 2/A,
so that the median score is about Aln2. Thus 0.7A4 would be an easy approximate formula for the
median.

Data on median scores is almost nonexistent, but Wood [15, Table B] gives this information for 22
“leading batsmen” to September 1939. Their ratio of median score to traditional average score (B)
ranges from 0.61 to 0.71. Wood’s list does not allow direct calculations of the true average A, since he
does not give the numbers of not-out innings. The CricInfo web site allowed this to be done (although
it differed from Wood on every occasion in the number of first class innings for the batsmen on his list).
This exercise suggested that taking A ~ 0.9B would be acceptable in general (and is the rule of thumb
following the observation by Clarke [2] that “more than 10% of scores are not outs”), so that 0.63B
would be a useful theoretical estimate of a batsman’s median score over a long career.

We also note that the formula (5) retains the non-aging (or Markovian, or lack of memory) property
of the geometric distribution (see Johnson et al. [13, page 201]). Thus, for example, Pr (R > 100) =
(Pr (R > 50))2.

Finally, we consider the probability of a batsman getting a duck. From our early work, the probability
of a batsman making no scoring stroke is

K

But this includes the probability of scoring 0, not out. Our earlier discussion suggests the following as
the way to go:

Pr(duck)wA T3
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Name Inn. | NO Auw ducks || E(ducks)
DG Bradman 80 10 85.04 7 1.8
RG Pollock 41 4 54.43 1 1.4
GA Headley 40 4 45.61 2 1.7
H Sutcliffe 84 9 54.64 2 3.0
E Paynter 31 5 48.31 3 1.2
KF Barrington 131 15 50.37 5 5.0
EdeC Weekes 81 5 54.88 6 2.8
WR Hammond 140 16 46.19 4 5.8
SR Tendulkar 143 15 48.85 7 5.6
GStA Sobers 160 21 44.06 12 6.9
JB Hobbs 102 7 53.34 4 3.7
CL Walcott 74 7 51.03 1 2.8
L. Hutton 138 15 47.89 5 5.5
GE Tyldesley 20 2 47.22 2 0.8
MH Richardson 21 1 50.75 0 0.8
DR Martyn 35 9 35.88 2 1.8
CA Davis 29 5 40.83 1 1.3
VG Kambli 21 1 53.30 3 0.8
GS Chappell 151 19 44.57 12 6.4
AD Nourse 62 7 47.49 3 2.5

Table 6: The all-time top twenty Test batsmen, by traditional batting average, at 7 February 2002, with
number of ducks scored and the approximate expected value of this number.

The world’s top twenty batsmen have been known to score a duck or two. Table 6 repeats some
information from Table 4, and gives the number of ducks scored by those batsmen in Tests and our
suggested expected value of this number using the probability estimate 2/(A,, + 2) multiplied by the
number ¢ — n of completed innings. The table indicates some level of agreement between the actual and
expected values; any attempt to model small numbers like these would be generally acknowledged as
difficult.

4 Conclusion

Many papers concerned with tennis have exploited the fact that the proportion of points won by a player
in some situation allows estimates of the probability of winning a game, set or match in a similar future
situation. Considering separately points won on service and points won when receiving leads to refined
estimates. In Bennett [1], there are references to probabilistic analysis in tennis, baseball, basketball
and American football, and numerous other relevant references. Yet, as we have already quoted Stephen
Clarke as saying, hardly any such analysis has previously taken place in cricket.

A “winning” ball in a game of cricket is one that takes a wicket from the bowler’s point of view, or
allows a scoring stroke from the batsman’s point of view. The proportion of winning balls has been used
in this paper to give the probability of bowling out a team, in the former case, or scoring a century, in
the latter case. Along the way, refinements and other applications have been given.

Bowling strike rates, along with estimates of the probability of running out an opposing batsman,
have been used in Section 2 not only to find the probability of dismissing the other side in one-day
cricket, but to demonstrate that this chance is approximately doubled when there is a good likelihood
of obtaining at least one run-out.

At the beginning of Section 3, two questions were posed regarding conclusions to be drawn from the
traditional batting average. But, to make a pun of it, this average is a very demeaned statistic. Even
in cricketing circles, it is not seen as being properly representative of a batsman’s past scores because
of the “ad hoc” treatment of not-outs.

We prefer instead the true batting average A: simply the average of all scores, out or not out. The
wicket average A,,, which refers specifically to completed innings, is approximately the same as A and
should be used for questions concerning completed innings (such as the first of those at the beginning of
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Section 3). Use A otherwise. Among other things, we have justified the simple formula (A/(A + 2))¢/?
as the probability of scoring at least ¢ runs, and the formula 2/(A,, + 2) as the probability of a duck.
Both of these have been compared favourably with results from the history of cricket.

The work of Section 3 depends crucially on the concept of the strike constant, although less crucially
on the value chosen for it. As a theoretical if hypothetical construct, its worth seems clear, and further
investigation of the notion would be extremely welcome.
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Abstract

In this paper, we develop a Gaussian kernel non-parametric regression model for one-day interna-
tional cricket matches. The model can be used to forecast the total score of the team that bats
first as a function of overs and wickets remaining and runs scored so far. It can also be used to
determine the probability of the second-batting team winning the match, as a function of overs and
wickets remaining and runs required. We also develop a filter that allows us to impose monotonicity
constraints in an optimal way. For example, the predicted score must be higher if there are more
overs and/or wickets remaining, but an unconstrained kernel regression model admits violations of
such logical constraints. Moreover, the framework we develop can be used to assess the impact
of individual events on the likely outcome of the match. For example, it is possible to compare
the relative impact of a lost wicket versus a number of slow-scoring overs. Thus, the model has
applications to coaches, commentators, and match-fixers.

1 Introduction

In a standard one-day international cricket match, each team has 50 overs and ten wickets with which to
score runs. Wickets and overs remaining can be thought of as the resources available to the team, with
the objective of converting these resources into runs. In this paper, we seek to model and predict how
efficiently these resources will be converted into runs. In particular, we seek to estimate two quantities.
For the team that bats first, we seek a prediction of their total score, conditional on the runs scored
so far, wickets remaining, and overs remaining. For the team that bats second, we seek to measure the
probability that they will win the match, conditional on the runs still required, wickets remaining, and
overs remaining.

The framework we develop involves a two-stage approach. First, we use a data-intensive non-
parametric regression technique. This essentially involves basing predictions on outcomes from similar
observations in the data set. Suppose, for example, that we seek to predict the final score of a team that
has lost three wickets for 100 runs in the first 20 overs of the match. We could examine our data set to
find any instance of this score in past games, and this could form the basis of our prediction. Of course,
the problem is that there are likely to be very few (if any) instances of this ezact score in our data
set. But there may be observations that are close (according to a metric to be defined). Information
about the final score of a team that was three for 102 off 21 overs, would presumably be relevant. Our
technique would also give this observation some weight, and observations that are less close will receive
less weight.

*We are grateful to Wally Boudry and Aaron Macksey for expert research assistance and help in collecting data. The
first-named author is employed also at the Fuqua School of Business, Duke University.
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The strength of this approach is that it allows the data, and the data alone, to guide us in making
predictions. But this is also a weakness as it admits logical contradictions. For example, the predicted
score should be higher if there are more overs and/or wickets remaining, but an unconstrained non-
parametric regression model admits violations of such constraints. Consider predicting the final score
of a team with 170 runs and ten overs remaining. It may be that in the actual data set, teams in
this circumstance with four wickets remaining do better than teams with ive wickets remaining. A
non-parametric regression model may then predict that, in this region, losing another wicket would be
beneficial. This type of counter-intuitive result is particularly likely if the data are sparse in the relevant
region.

To avoid such logical contradictions, we develop a filtering algorithm that allows us to impose
monotonicity constraints in an optimal way. We impose two constraints: (i) the predicted score must
be higher if there are more overs and/or wickets remaining (other things equal), and (ii) the predicted
probability of the second team winning the match must be greater if they have more overs and/or
wickets remaining and if they require fewer runs. Our filtering algorithm adjusts the predictions from
the non-parametric regression model such that these constraints are satisfied. The algorithm minimises
a weighted sum of the squared movements and provides a unique transformation. The result is a set of
conditional predictions that is driven by a large data set, but conforms to this set of logical monotonicity
constraints.

The remainder of the paper is structured as follows. Section 2 provides an overview of our modelling
approach. It describes the non-parametric regression procedure and the filtering algorithm that we
develop. Section 3 describes our data set. Section 4 presents the empirical results and Section 5
concludes.

2 Model development

The first stage of our approach involves estimating a Gaussian kernel non-parametric regression model.
In this stage we seek an estimate of two quantities. For the team that bats first, we seek a prediction of
their total score, conditional on the runs scored so far, wickets remaining, and overs remaining. For the
team that bats second, we seek to measure the probability that they will win the match, conditional on
the runs still required, wickets remaining, and overs remaining. We describe how the non-parametric
regression technique can be used to estimate each of these quantities in turn below.

2.1 Predicting the score of the team that bats first

The objective of this component of the model is to forecast the total score of the first-batting team.
A flexible model is required so that such a forecast can be made at any time during the first team’s
innings. At any point throughout this innings, the three most obvious influences on the first team’s total
score are (i) the number of runs scored so far, (i) the number of overs remaining, and (iii) the number
of wickets remaining. Therefore, the total score should be modelled as a function of (at least) these
three predictor variables. What makes this exercise difficult is the interaction among the variables. An
extra five overs of batting time, for example, is worth more if there are eight wickets remaining than if
there is only one. Duckworth and Lewis (1998) recognise this interaction in considering both overs and
wickets to be “remaining resources” in their exponential function that is used for target-adjustment in
rain-affected matches.

Rather than attempting to fit the data to a concise mathematical formula, a non-parametric data-
driven approach is adopted here. The goal is to form an estimate of the Team 1! total as a function
of runs scored so far and overs and wickets remaining. This is done by finding a subset of the data for
which the predictor variables are similar to those of the current match. For example, suppose the current
score is three wickets for 100 runs in the 25th over. The non-parametric kernel regression technique

Henceforth “Team 1” will be used to denote the team that bats first and “Team 2” will be used to denote the team
that bats second.
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essentially searches through the data set and selects all observations for which the number of wickets is
close to three, the number of runs is close to 100 and the number of overs is close to 25. The total score
of teams in this subset of the data then forms the basis of the estimate of the conditional expectation of
this team’s total score. When using this technique, “close” is defined in terms of a Gaussian weighting
function.

More formally, T is defined to be the total score of Team 1 and the goal is to compute the conditional
expectation of T', given values of the predictor variables, E[T" | r,w, o], where r represents the run-rate
per over achieved so far, w represents the number of wickets remaining, and o represents the number
of overs remaining. Throughout the paper we estimate run-rates per over rather than runs in absolute
terms. In this way, quantities are comparable at different stages throughout the match. Thus, we
estimate the expected run-rate per over for the rest of the innings, rather than the number of runs yet
to be scored. In this case, for a particular observation i,

E[T; | ri,wi,05] = i + 0; X E[R; | 4, w;,04],

where R; is the run-rate per over for the remainder of the innings.
This conditional expectation is estimated using the Nadaraya—Watson Gaussian kernel technique as
described in Nadaraya (1965):

et BN ((ry = ) [hr) N (w; = w)/h) N (05 = 00) /o)
EL N (s =) /BN (w; = wi)[hu)N (05 = 03)/ho)

Here we choose a triplet (r;,w;, 0;) and we want an estimate of the total score, conditional on these
values. To compute this, we sum the total score for each of the j =1, ..., N observations in our data
set, each weighted by how “close” it is to the triplet being evaluated. Closeness is defined in terms
of a Gaussian distance function in each of the three conditioning variables. Thus, N(-) represents the
standard normal probability density function. In each case, we use a smoothing parameter, h. Large
values of this parameter result in smoother estimates as a more diffuse weighting function means that
more observations from the data set are given more weight in the estimation. Smaller values of / result
in only data observations very close to the triplet entering into the estimation with any significant
weight. In all of our calculations, we use the optimal bin width of Scott (1979). The implementation of
this technique is described further in Silverman (1986).

E[R; | ri,w;,04] =

2.2 Predicting the probability that the second-batting team wins the match

The objective of this component of the model is to measure the conditional probability of the second-
batting team winning the match. The model must be flexible enough so that this forecast can be made
at any time during the second team’s innings. At any point throughout this innings, the four most
obvious influences on the outcome of the match are (i) the first team’s total score, (ii) the number of
runs scored by the second team so far, (iii) the number of overs remaining for the second team, and (iv)
the number of wickets remaining for the second team. The first two of these can be combined as the
run-rate per over required to reach the target set by the first team.
The result of the match is defined as:

p_ {0, if Team 1 wins,

1, if Team 2 wins.

The goal is to compute the conditional expectation of P, given particular values of the predictor vari-
ables. This is estimated using the Nadaraya—Watson Gaussian kernel technique:

SN PiN((Rj — Ri)/hg)N((w; —w;)/hu)N((0; = 0;) /o)
sy N((Rj — Ri)/hr)N((w; — w;)/hw)N((0j = 03) /ho)

In this setting, P; is the binary game outcome and all other terms are as defined in the previous section.

E[P; | Ri,w;, 03] =
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2.3 Using a filter to impose monotonicity constraints

In this section, we develop a filter that allows us to impose monotonicity constraints in an optimal way.
For example, the predicted score must be higher if there are more overs and/or wickets remaining, but
an unconstrained kernel regression model admits violations of such logical constraints. We begin by
developing the filter for a one-dimensional problem to develop intuition, followed by a more general
representation.

I:)k—l
\ Pk+1
81

\ D akV\ﬁ( + ak+1W<+1

I:)k+2

\ 4

k k+1

Figure 1: The filtering algorithm.

The one-dimensional problem
For given vectors a and w having length n, we want to perform the following operation:
minimise: 2:(bZ — a;)?w;
subject to: by > by > -+ > by,

In this setting, a represents the output from the kernel regression model (e.g. the predicted score,
given the overs and wickets remaining) and w represents the weight given to that point (e.g. there are
many observations of ten wickets and 49 overs remaining so that point on the grid receives high weight,
there are no observations in our sample of two wickets and 49 overs remaining, so that point on the
grid receives little weight). Geometrically, each element of vector a can be represented by a point in
a 2-dimensional space. Each point is weighted by the corresponding element of vector w. Finally, b
represents the output of the filter—the points in a are moved in a way that imposes the monotonicity
but requires the minimum possible weighted-average movement in the elements of a. This geometric
representation is illustrated in Figure 1.

Lemma 1 If ap < a41 for some k, the optimal solution is such that by = bp41.

Proof: Assume the optimal solution b gives by, > bi.1. We will prove that there exists a b’ that satisfies
the constraint condition, yet gives a smaller value for the objective function.
Consider b’, where
b, =b;, fori #k, k+1,
brwy + b1 Wit
Wi + Wet1 )

1o gl _
k= Dky1 =
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As w > 0 and by > by, therefore by, > by, = by | > bgy1. Since b = b; (i # k, k+ 1), it is clear
that b’ satisfies the constraint condition.
In terms of the objective function,

> (0 = ai)’wi =Y (b — a;)’w; = A+ B+ C,

where
k—1 k—1
A = Z(b; — ai)zwi — Z(bl — ai)zwi,
i=1 i=1
B = wy (b}, — ag)? + wigr (b gy — ahy1)” — wi(br — ar)® — wip1 (bpgr — apg1)”
= wi (b — ar)® — (b — ar)?) + wrr1 (Vg1 — arr1)® — (brr1 — arg1)?)
= wi (b}, — br) (D) + b, — 2ax) + wry1 (1 — 1) (B + brtr — 2ak41),
C = Z (b; — ai)2wi — Z (bl — ai)Qwi,
i=k+1 i=k+1

By construction, b} = b; for i # k, k + 1. Therefore, it is easy to see that A = C' = 0. From
by = by = (brwr, + bpr1wpy1)/(wr + wiy1), we have

W WE41

bri1 — bg).
W +wk+1( kol k)

wy, (b, — br) = —wit1 Dy q — bry1) =

Substitute this in B. We have

WEWE4-1

B=—"T__
Wy + We1

(b1 = i) (b, + bk — 2ar) + Wit (Vg1 — k1) (Byy + brr — 2ap41)).

Because b, = b;_,,, we have

W W41
B = _kWki1 - — 2 — ).
we + Wean (br+1 — bk) (b — br1) + 2(ag+1 — ax))

Since w > 0, b, > bpy1 and ap < a1, it follows that B < 0. This leads to

Z(b; - ai)2wi — Z(bl — ai)2wi <0,

or > (b} —a;)*w; < 5 (b; —a;)*w;. That is, b’ results in a smaller value for the objective function. This
completes the proof.

Using Lemma 1, if ay < apy1 we have by = biy1. Our objective function becomes

< > (bi- ai)zwi> + wi (by — ar)® + wipr bk — agp1)?
ik, k+1

2
= ( Z (bz — ai)2wi> + (wk + wk+1) (bk _ Wray + U)k+1ak+1> +D.
ik, k+1 Wi + W41

Here, D is a function of a and w, and therefore can be ignored for optimisation purposes.
To this point, the algorithm for our problem should be obvious:

o If ay > as > -++ > ay,, the optimal solution is clearly b = a; the objective function is minimised
at zero.
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e If a;, < apyq for any k, the optimisation problem becomes one where

WOk + W1 Q+1
W + We41

a:<a1)"')ak17 7ak+27"')an>7

W = (Wi, ..., We—1, Wk + Wht1, Wkt2y -+ - s W),

bk+1 — bk

This is a simpler optimisation problem because the length of each of the vectors a and w has reduced
from n to n—1. The same procedure can be repeated until a solution is found. Obviously, the algorithm
converges because the procedure would be repeated no more than n — 1 times.

Geometrically, the above algorithm can be understood as follows:

e Step 1: If the starting set of points is monotonically decreasing, no transformation is required.

e Step 2: If monotonicity is not observed at, say, P, and Py, we will move Py up and Pgy; down
to the weighted average of P, and Pj41; and go back to Step 1. However, in subsequent steps, the
two points Py, and Pyy1 will be treated as one group of points. That is, they will have the same
value, move together, and be weighted by the total weight of the constituent points.

Each vector a can be seen as consisting of some groups of points. Points in each group have the same
value, move together and are weighted by the total weight of the constituent points. Initially, vector a
consists of n groups, each has one point—weighted by the corresponding element of w. Our algorithm
can be restated as follows:

e Step 1: If the starting groups decrease monotonically from left to right, they form the needed
solution.

e Step 2: If monotonicity is not observed at two adjacent groups, these two groups will be merged
to form one group, whose value will be the weighted average of the two constituent groups; and
we go back to Step 1. Two groups are adjacent if there is no other point standing between them.
For example, groups of points {P;, P} and {Ps, Py, P;5} are adjacent and they can be merged to
form a group of {P, P5, P5, Py, Ps}. This procedure can be repeated until a solution is found.

The two-dimensional problem

For given n X m matrices a and w,

minimise: Z(bij — aij)Qwij
subject to:  b; i, > bj,j, for every iy > ji, iz > jo. (1)

Geometrically, each element of matrix a can be represented by a point in a 3-dimensional space.
Each point is weighted by the corresponding element of matrix w. Again, our problem is to find a new
set, of points, closest to the given set, that forms a monotonic decreasing trend along the two dimensions
of matrix a.

Analogous to the one-dimensional problem above, each matrix a can be seen as consisting of some
groups of points. Points in each group have the same value, move together and are weighted by the
total weight of the constituent points. It should be noted however that while in the one-dimensional
case, each group of points will correspond to a vector, each two-dimensional group of points may not
necessarily represent a rectangular or square matrix. For example, points {Pi1, P12, Pe1} can form a
group. Given the form each group of points can take, the concept of adjacency in the two-dimensional
setting also needs further clarification.

Two groups of points Gy and G2 are said to be adjacent if there exists no other group G3 such that:
G1 > G3 > G5 or Gy > GG3 > G1 by the operation of inequality (1). For example, if Gy consists of
{Pi1, Py} and G consists of {Pa2}, they are not adjacent because there exists G consisting of {Pj2}
and by the operation of (1):
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e value of Pyy(bya) > value of Pyo(by12), that is, G2 > G3; and
e value of Pj5(by2) > value of Pyy(b11), that is, Gz > G;.

On the other hand, if G; = { P11, Po1} and G = { P12}, they are adjacent.

Two adjacent groups can be merged in a similar way as in the one-dimensional case. For example,
G1 = {Pll,P21} and G2 = {Plg} can be merged to form G3 = {P117 P21,P12}.

So in the two-dimensional case, the algorithm we use is:

Initially, matrix a consists of n x m groups; each group has one point, weighted by the corresponding
element of matrix w.

e Step 1: If the starting groups decrease monotonically along the two dimensions of matrix a, they
form the needed solution.

e Step 2: If the constraint condition (1) is not satisfied by any two adjacent groups, these two
groups will be merged to form one group, whose value will be the weighted average of the two
constituent groups; and we go back to Step 1. This procedure can be repeated until a solution is
found.

It is important to note that Lemma 1 does not hold if a and w are matrices rather than vectors.
Therefore, while our algorithm always gives the exact solution in the one-dimensional case, it may not
always give the optimal solution in multi-dimensional cases.

10
9
8
g . —r
E 5 f
2 4 M
xr 3
2 —— First Team
14 — Second Team
0 T T T T
0 10 20 30 40 50
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Figure 2: Average runs scored per over.

The advantage of our algorithm is, however, its relative simplicity and its generalisability to cases
of multi-dimensional problems. Though there exist several methods (such as Lagrange multiplier) that
can deliver exact solutions, the computational burden often renders such approaches intractable. The
Lagrange multiplier method, for example, requires a number of calculations that increases exponentially
with the number of points in our data matrix a. That is, for a 50 x 50 matrix, the Lagrange method
requires at least 22590 calculations. Our algorithm, on the other hand, delivers a reasonable solution
within less than five seconds. In addition, if there are not many violations of the constraint conditions (1)
in the data matrix a, our algorithm tends to return solutions that are intuitively and visually appealing.
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The three-dimensional problem

For given n x m x k matrices a and w,

minimise: E (bijn — aijn)*wijn

subject to: bi1i2i3 Z bj1j2j3 for every ’il Z j1, 7:2 Z j2, i3 Z j3. (2)

Geometrically, each element of matrix a can be represented by a point in a 4-dimensional space.
Each point is weighted by the corresponding element of matrix w. Again, our problem is to find a
new set of points, closest to the given set, that forms a monotonic decreasing trend along the three
dimensions of matrix a.

Again, each matrix a can be seen as consisting of some groups of points. Points in each group have
the same value, move together and are weighted by the total weight of the constituent points. Initially,
matrix a consists of n x m X k groups; each group has one point, weighted by the corresponding element
of matrix w.

The algorithm in this setting follows in an analogous way to the two-dimensional case above. The
extension to higher dimensions then follows in the same way.

3 Data

Data on all one-day internationals from November 1998 to August 2001 were collected from the Statistical
Archive section of the cricinfo.com web site. We collected data in the form of a Run-Rate Comparison.
These data include the score (wickets and runs) of the team that is batting. The data are reported
as at the end of every over of the match. In the vast majority of games, both teams have 50 overs
available to them when they bat. We exclude games that are interrupted by rain to the extent that
one or both teams have less than 50 overs available. Only games involving national teams are included
in our data set. Games involving “A” teams or provincial teams are excluded, as are games involving
non-Test-playing nations such as Kenya. The result is a sample of 317 games. Table 1 contains some
summary statistics.

Mean 233
Standard deviation 53
Median 236
Minimum 68
Maximum 376

Table 1: Summary statistics: score of first-batting team.

Table 1 indicates that there is a wide range of outcomes for the score of the first-batting team.
Within our sample, the second-batting team won 51.42% of the matches. Another interesting feature
of the data is the pattern in which runs are scored. Figure 2 shows the average runs per over scored
by each team. To compute these averages, we use all available observations. For the first over, we have
the full sample of 317 games. In our sample, there are ten instances of the first-batting team being
bowled out within the first forty overs, so we have only 307 observations for over number forty, and so
on. The figure shows that the second-batting team begins the innings at a faster rate, on average than
the first-batting team. The average score of the second-batting team is lower in the later overs for two
reasons. First, there are a number of games in which the second team is well-placed by the 40th over
and scores at a low rate as they cruise to victory. Second, in the cases where the second team requires
a very high rate to win the game in the later overs, there are many instances of the team being bowled
out and hence dropping out of the sample for the remaining overs.
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Runs so far

Overs remaining

Figure 3: Predicted total scores—8 wickets remaining.

4 Results

4.1 Predicting the score of the team that bats first

The output of our filtered kernel regression procedure is a series of surfaces of predicted total scores.
Each surface relates to a particular number of wickets remaining. Within each surface, the predicted
total score depends upon the runs scored so far and the number of overs remaining. In each case, only
part of the surface is relevant. For example, the surface for eight wickets remaining appears in Figure 3.

Clearly, there are very few observations in our data set of eight wickets remaining with 49 or more
overs remaining. Almost as rare is eight wickets remaining in the final few overs of the innings. Thus,
the extreme left and right areas of the surface above are based on scant data and are unlikely to be
required in practice. Moreover, the back right corner of this figure can also be ignored as it relates to
observations where there are large amounts of runs scored from very few overs. Symmetrically, the front
left corner is equally irrelevant as it relates to extremely small scores acquired over many overs. That
is, it is the middle portion of the surface that relates to observations that are likely to be observed in
practice.

Figure 4 demonstrates that, point-by-point, predicted scores are lower when there are fewer wickets
remaining. The difference becomes less when there are fewer overs remaining (near the left-hand edge
of the surface) as wickets in hand are less valuable in that instance.

More intuition can be obtained by contrasting the predictions of total scores across regions of these
surfaces that are more heavily populated with data. Figure 5, for example, shows the predictions of
total scores when there are ten overs remaining. Obviously, more runs scored so far and more wickets
remaining suggest a higher total score.

A similar picture emerges when examining total scores predicted when there are 20 overs remaining,
as illustrated in Figure 6. In this case, we compare the model predictions (which are based exclusively
on actual data) with a common rule of thumb that predicts that the total score will be twice the score
after 30 overs. This rule of thumb is also marked in Figure 6. Our procedure suggests that total scores
are less sensitive to the number of runs scored so far than the rule of thumb suggests.

4.2 Predicting the probability that the second-batting team wins the match

The output of our filtered kernel regression procedure for the probability of the second team winning
the match is a series of surfaces of probabilities. Each surface relates to a particular number of wickets
remaining. Within each surface, the probability of winning depends upon the run-rate required and the
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Runs so far
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Figure 4: Predicted total scores—5 wickets remaining.
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Figure 5: Predicted total scores—10 overs remaining.

number of overs remaining in the match. For example, the surface for eight wickets remaining appears
in Figure 7.

More intuition can be obtained by contrasting the probabilities across various regions of these sur-
faces. Figure 8, for example, shows the probabilities of the second team winning when there are ten
overs remaining. Obviously, a lower required run-rate and more wickets remaining suggests a higher
probability of victory. But this relationship is not linear or uniform in either dimension. Wickets in
hand are less important when the required run-rate is very low, but very important when the required
run-rate is between 6 and 8.5 runs per over. Within this range, there is almost 80% chance of winning
if eight wickets are in hand, and less than 20% chance if only four wickets remain.

A similar picture emerges when examining probabilities when there are 30 overs remaining, as
illustrated in Figure 9.

Figure 10 illustrates the success rate of the model at different stages during the second innings of
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Figure 6: Predicted total scores—20 overs remaining.
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Figure 7: Probability of second team winning—S8 wickets remaining.

the match. The model is able to predict outcomes with better than 70% success at the beginning of the
second innings. The success rate is over 85% midway through the innings. In all cases, the success rates
are based on matches that are incomplete. Many matches are complete before the 50th over, either due
to the second team being bowled out or having already passed the first team’s score. Thus, the success
rate for the model in the 50th over is based on a relatively smaller number of observations.

4.3 Application to actual matches

To further illustrate the operation of the model, we apply it to two actual matches from the 2001-2002
Australian season.

Our first example is the match between New Zealand and Australia at the Melbourne Cricket Ground
(MCG) on 11 January 2002. In this match, New Zealand batted first, slumped to 7/96 in the 28th over
and recovered to post a total of 199. In Figure 11, we plot the model’s prediction of the total score
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Figure 8: Probability of second team winning—10 overs remaining.
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Figure 9: Probability of second team winning—30 overs remaining.

throughout the innings. At the outset, the predicted score is around 230, which is the unconditional
mean total score of the matches in our data set. The predicted score falls as wickets are lost. At the
end of the 30th over, the score is 7/103, primarily due to the fact that seven wickets have already been
lost. This suggests that in matches in which teams are in this sort of position, the average total posted
is in the order of 160. In this particular match, New Zealand recovered remarkably, performing much
better than the average team in this situation. The predicted total therefore rises over the last 20 overs
of this innings.

Figure 12 illustrates the model’s assessment of the likelihood of the second team (Australia) winning
the match. Given the low target and the excellent start made by the Australian team, the probability
of success is over 90% for the first 20 overs. After this point, the large number of wickets lost causes a
sharp reduction in this win probability. By the 30th over, the score is, 5/137, and the probability of a
win is less than 10%.

The second match we analyse is also between New Zealand and Australia. This game was played at
the MCG on 29 January 2002. Again, New Zealand batted first and posted a total of 245. Figure 13
plots the models prediction of the total score throughout the innings. This innings is more “standard”
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Figure 11: Australia v New Zealand, 11 January 2002, MCG, first innings (New Zealand)—model pre-
dictions of total score.

in that there is no dramatic collapse or any spectacular recovery. Thus, the predicted score is relatively
flat throughout the innings.

Figure 14 plots the probability of Australia winning the match. This win probability is initially a
little below 50%, consistent with the target being somewhat above average. As wickets fall, however, the
likelihood of an Australian victory falls. By the 25th over, six wickets had fallen and the win probability
is less than 10%. By the 43rd over, however, Australia had reached 7/195 and required 7.28 per over
for seven overs with three wickets in hand. At this point, the model assesses a better than 20% chance
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Figure 12: Australia v New Zealand, 11 January 2002, MCG, second innings (Australia)—probability
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Figure 13: Australia v New Zealand, 29 January 2002, MCG, first innings (New Zealand)—model pre-
dictions of total score.

of an Australian victory. By the last over, Australia required only six runs, with two wickets remaining,
and the win probability is in the order of 60%.
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Figure 14: Australia v New Zealand, 29 January 2002, MCG, second innings (Australia)—probability
of second team victory.

4.4 Comparison with the Duckworth—Lewis method

Duckworth and Lewis (1998) proposed a method for adjusting targets in rain-interrupted one-day
matches.? Their technique is based on a mathematical description of the runs that are expected to
be scored, conditional on the overs and wickets remaining. In this sense, their framework provides a
prediction of the total score and can therefore be compared with our method. The Duckworth—Lewis
approach models the runs to be scored as an exponential function:

E[R; —r; | ws,0:] = Zo(w;)(1 — exp(—b(w;)0;)).

In this setting, R; —r; represents the runs yet to be scored, Zy(w;) represents the asymptotic total runs
to be scored (as the number of overs becomes large) conditional on w; wickets remaining, and b(w;) is
an exponential decay factor. Figure 15 illustrates the Duckworth—Lewis forecasts of runs to be scored.

Our kernel regression method provides conditional forecasts of the total score that will be scored and
is therefore comparable to this aspect of the Duckworth—Lewis approach. There are, however, some key
differences between the two approaches. First, our approach is data-based. We make no assumptions
about the functional form of any relationship between any of the variables. The Duckworth—Lewis
approach is based on a specific mathematical relationship, albeit one that is calibrated to the data.
Second, in our kernel regression forecasts, we condition on runs scored so far. Consider two cases: one
in which a team has reached 5/120 in the 40th over, and another in which a team has reached 5/200
in the 40th over. The Duckworth—Lewis framework would forecast that 63 more runs will be scored in
both cases, since the amount of resources is identical—ten overs and five wickets. Our model predicts
that an additional 51 runs will be scored in the first case and 72 in the second. This seems to make
intuitive sense in that a higher number of runs scored so far is likely to be an indication of good batting
conditions available. In our data set, there are six matches in which teams had lost five wickets at the
40th over and had scored between 115 and 125 runs. On average these teams scored an additional 48

2The Duckworth-Lewis method has been published in the form of a set of tables and as a simple computer program.
It is intended to adopt the same practice with the results of this paper, after some further refinement of the model and
an extension of the data set.
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Figure 15: Runs to be scored according to Duckworth-Lewis method.

runs over the remaining ten overs. Similarly, there are seven matches in which teams had scored between
195 and 205 and had lost five wickets at the 40th over. These teams scored an additional 70 runs over
the final ten overs, on average. Of course, it is not surprising that our model calibrates more closely
to the data, given that our approach is entirely data-driven. Moreover, in designing a system to be
used for target-adjustment in rain-affected matches, Duckworth and Lewis are constrained to produce
a simple and transparent method.

Therefore, to make the two approaches more comparable, we apply our kernel method to the task
of estimating the runs yet to be scored as a function only of wickets and overs remaining. The results
are shown in Figure 16.

In this figure, we do not display estimates over regions for which we have no close observations in
our data set. For example, we have no observations of one wicket and 49 overs remaining, nor any
observation close to this, so we remove this from the figure.

To gauge the differences between the Duckworth—Lewis approach and our data-driven kernel ap-
proach, we plot the difference between the two procedures in Figure 17.

Figure 17 displays the forecast total from our kernel method minus the forecast from the Duckworth-
Lewis method. When there are ten wickets remaining, the Duckworth—-Lewis method underpredicts
relative to our method when there are 50 overs remaining. This is caused by differences in the data
sets. Our data consists of one-day internationals, in which the average score of the first-batting team is
around 233. The Duckworth-Lewis data set includes lower-scoring first-class matches and the average
total score in their data set is 225. The Duckworth—Lewis method overpredicts relative to our method
between the 25th and 42nd overs. This is caused by the greater curvature of the Duckworth—Lewis
function relative to ours in the figures above. Since it is extremely unlikely that a team would still have
ten wickets intact near the end of the innings, comparisons when there are few overs remaining are
difficult to interpret. A similar shaped pattern exists when there are eight wickets remaining, although
in this case the Duckworth—-Lewis method almost uniformly underpredicts relative to our kernel model.
Again, this is probably attributable to differences in data sets. First-class teams usually have less
batting depth than international teams, so the loss of two wickets has a more detrimental effect in the
Duckworth—Lewis sample than in ours.
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Figure 17: Runs to be scored according to kernel method.

5 Conclusions

Our Gaussian kernel non-parametric regression model provides a framework for forecasting the total
score of the first-batting team and the probability of the second team winning the match. These are
conditional estimates, based on information about the current score.

Future extensions of the model would include conditioning on a larger information set. For example,
average scores in India and Pakistan are higher than those in the UK, so location could also be included
in the conditioning information. Even within geographical regions, some grounds consistently produce
higher scores than others.

We could also condition on the recent results of the two teams to incorporate any persistence in
results.



How to fix a one-day international cricket match 31

Finally, we could condition on the score and further game details. Consider two cases, that both
involve scores of 8/210 after 45 overs. In one case, the two not-out batsman are low-order players who
have just begun batting. In the other case, one of the batsmen is a top-order player who has already
scored 75 runs. Presumably, we would expect a higher score in the second case. This kind of additional
conditioning information is likely to further improve the performance of the model.
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Abstract

Some fundamental, and hopefully interesting, results are presented in three areas of sport science:
male/female differential performance, sport categorisation and rating systems. The laws of physics
are used to convert differential male/female running, jumping and swimming winning performances
into differential power output as reflected in those performances. In turn, those power differences
disappear when corrected for the fact that men and women burn the same number of calories per
unit of lean body mass. That is, those performance-based power differences are consistent with
differences in lean body mass. It is shown that there are only three types of sports, depending
on the interaction of the competitors: contact sports with direct contact where each competitor
tries to control the other (as for boxing, judo), object sports with indirect contact where each
competitor tries to control a single object (as for basketball, soccer) and independent sports where
each competitor performs independently and needs only to control the athlete’s own performance
(as for running, swimming, shooting and golf). It is suggested that there are three types of rating
systems each of which align with one specific audience. The general non-technical audience trusts
subjective systems (polls), those seeding tournaments trust accumulative systems where points can
only increase due to entering many tournaments while performing well and the technical audience
trusts adjustive rating systems in which statistics and theory create ratings which can increase or
decrease in predictor—corrector fashion.

1 Introduction

In the 30 years in which I have observed and analysed sports statistics, a number of general conclusions
have presented themselves. These conclusions and the ensuing insights are shared in this paper. Perhaps
the most significant conclusions relate to the very nature of male versus female athletic achievement.
Much has been written on that subject. In one infamous paper [21], female runners were projected to
defeat male runners midway through the 21st century, based on the then rate of improvement, which
was not sustained, as we shall soon see. In an earlier conference paper [8], I reported on the differential
performance, based on time, of male and female Olympic champions in running, jumping and swimming
events, leaving open the question of the origin of those differences. An incentive for one part of this paper
comes from a study of the power output of Olympic rowing champions [12], using laws of hydrodynamics
and data on boats and athletes.

In Section 2, the laws of physics are applied to running (viscous friction), jumping (ballistic trajec-
tory), pole vault (transfer of kinetic energy to potential energy) and swimming (hydrodynamics), so as
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to estimate power output as reflected in winning times. Those performance-based differences are com-
pared with physiological differences in lean body mass, given that male and female burn equal calories
per unit of lean body mass. Section 3 covers the very nature of sport. The incentive for this section
came from categorising [10] 80 major sports, recognised by the International Olympic Committee or
cited in widely used sports references. Section 4 covers one aspect of rating systems that is generally
overlooked: the audience that trusts that type of rating system. While a person creating a rating system
may demonstrate very good properties of that system, an important question is “What audience will
accept that type of system?”.

2 Fundamental nature of differential male/female
world and Olympic winning performances

2.1 Measures of differential performance

The goal is to establish an understanding of the very nature of differences in male and female athletic
performance. To delimit the study, elite athletes are considered, in particular Olympic and world
champions, about whom much is said and to whom athletes look for inspiration. An advantage of this
delimiting is that performance data is unambiguous and readily available via any almanac or record
book. A method of comparison in needed. Percent differences are used here. If ty  is the time for the
winning woman while ¢57 is the time for the winning man, the percent difference (%D) in time (7T') is

%DT = 100 <1 - tﬂ) . (1)
tw

Instead, suppose velocities are to be used, where vy is the average velocity of the winning woman
while vys is the average velocity of the winning man. The percent difference in velocity (V) is

%DV = 100 (1 - ”—W> . 2)

Um

In each case, the larger quantity appears as the base. These equations seem to leave a choice (and
invoke a discussion) as to preference. In fact, no choice is needed. Over a distance d with elapsed
time ¢, average velocity is d/t. Thus, (2) can be equated to

%DV = 100 ( - fl/ﬂ> =100 (1 —~ ?) = %DT. (3)

[tm w

It is useful to note that %DT and %DV are the same. Another useful measure of differential
performance is the fraction of the race remaining to be run by the winning woman, when the winning
man crosses the finish line (understanding, of course, that the races are not run at the same time). Let
dg be the distance remaining (R) to be run. Using average velocity, and noting that the woman must
run for ty — tps seconds after the man finishes,

%DR = 100%3 T tz)(d/tW) =100 (1 - ?) = %DT = %DV. (4)
w

Thus, all three measures are exactly the same. If, for a given race, we obtain a 10% difference, that
simultaneously means that there is a 10% difference in time, a 10% difference in velocity and 10% of the
race remains for the woman to run. If the same measure occurs for a longer race, then in proportion to
the length of the race, the woman would remain equally as far behind.

Clearly (1) to (4) are appropriate for running and swimming. What about events determined by
distance or height (as for the long jump and pole vault)? For computational convenience (which was
far more important than mathematical consistency when this analysis was first employed 30 years ago
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in the time of punched cards and mainframe computers), I modify (1) with a sign change, realising that
division is by the lesser value, in contrast with (1) to (4) where division is by the larger value. For the
%D in distance (Di),

%DDi = 100 <d—M - 1) . 5)
dw

Throwing events such as the shot put, discus and javelin are not considered. There are a number of
reasons for this omission. First, the weight thrown by female competitors is about half of the weight
thrown by males. Second, it is difficult to accurately gauge the aerodynamic effect on the differential
weights, which becomes important if power differential is to be estimated. Third, the weight of both
men’s and women’s javelins have been redistributed rendering older results meaningless.

A significant contribution of this paper is the estimation of the percent difference in power (the
product of force and velocity) based on each winning performance, and then its interpretation using
physiological differences between men and women. Power is measured in watts, representing the rate at
which energy is consumed. Power is analogous to the rate that an automobile travels in kilometres per
hour, while energy, often measured in kilocalories, is analogous to the distance traveled in kilometres.
Most people are familiar with light bulb wattage. An average person can produce about 100 W of output
power applied to a step machine or bicycle. The human body is a fairly inefficient machine, in that
about four calories of internal energy must be burned for every calorie of useful output. That 100 W
of output power requires the burning of about 350 k calories per hour by the athlete’s body. An elite
athlete can produce more than 400 W of output power and burn over 1400 k calories per hour internally.

The %D in power (P) is calculated from the power ratio

%DP = 100 (1 - p—W> . (6)
pPMm

In the rest of this paper, mass and weight will be used interchangeably, although strictly speaking,
mass is measured in kilograms while weight (the product of mass times the acceleration of gravity)
is measured in newtons. When you stand on a scale, the acceleration of gravity pulls down on your
mass, deflecting the scale, which is normally calibrated to read kilograms instead of newtons. Certainly,
weight is proportional to mass, so in that context the terms will be used interchangeably.

2.2 Observed percent differences in running, jumping and swimming

Data were collected for the last eight Olympic games (1972-2000), the last eight TAAF track and field
(athletics) world championships (1983-2001) and the last eight FINA swimming world championships
(1973-1998). Data for % DT are shown in Table 1 for eight running events and data for %D Di are shown
for four jumping events, averaged over the 16 world and Olympic competitions. The third column will
be discussed shortly.

The average %D in the second column of Table 1 is just over 10% for the running events and about
twice that for the jumping and pole vault events. The pole vault has only been contested three times
(once in Olympic and twice in TAAF competition), hence the %D may drop as happened in the triple
jump when that event was introduced and then mastered by female athletes. For timed events, % DT
increases from 100m to 10000m then drops for the marathon.

Table 2 shows % DT data for 12 swimming events averaged over the 16 world and Olympic compe-
titions.

For swimming, average %D in the second column of Table 2 is just under 10%. There a downward
trend as distance increases in all events except breaststroke. In the next section, the laws of physics are
employed to convert %D in time and distance to %D in power to create column three in both tables.
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Percent difference Percent difference
Running events in time (%DT) in power based on %DT
100m 8.53 25.45
200m 9.30 26.70
400m 10.44 28.53
800 m 10.57 28.74
1500 m 10.56 28.72
5000 m 11.25 29.82
10000 m 11.47 30.17
Marathon 10.14 28.05
Average 10.28 28.27

Percent difference Percent difference
Jumping events | in distance (%DDi) | in power based on %D D1
High jump 17.22 26.66
Triple jump 18.81 27.16
Long jump 20.82 27.76
Pole vault 28.81 31.08
Average 21.41 28.16

Table 1: Running and jumping events—eight Olympic Games (1972-2000), eight IAAF World Cham-
pionships (1983-2001).

Percent difference Percent difference
Swimming in time (%DT) | in power based on %DT
50 m freestyle 11.29 32.14
100 m freestyle 10.35 29.96
200 m freestyle 8.84 26.37
400 m freestyle 7.98 24.26
100 m backstroke 10.23 29.68
200 m backstroke 8.69 26.00
100 m breaststroke 10.34 29.94
200 m breaststroke 10.39 30.06
100 m butterfly 10.14 29.47
200 m butterfly 8.97 26.68
200 m individual medley 9.08 26.95
400 m individual medley 8.02 24.36
Average 9.52 27.99

Table 2: Swimming events—eight Olympic Games (1972-2000), eight FINA World Championships
(1973-1998).

2.3 Using physics to estimate power differences
Some approximations

In the use of physical laws to follow, approximations are needed for the relative surface area of male and
female swimmers that are wetted (in contact with the flow of water) and for the cross-sectional area
of an athlete, needed to estimate the foot area of a runner that is in contact with the ground during
each running cycle. The ratio of the wetted surface area for swimmers can be estimated similarly to
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finding the relative wetted surface area of boats; that is, by taking a ratio of volume raised to the
exponent of 2/3. Volume may have units of m? while area may have units of m2. Certainly, dimensional
considerations suggest applying the exponent 2/3 to volume when approximating relative surface area,
but the accuracy of that approximation depends on the actual shape. This approximation works well for
a slender cylinder, which approximates the shape of the human body and of many boats. For example,
suppose one cylinder has radius of 5in and length of 72in. The volume V; is 5655in® and the area A; is
2419in2. Suppose a second cylinder has radius 4.45in and length 60in. The volume V5 is 3733in® and
the area A, is 1802in2. Now, the actual ratio of areas is 2419/1802 or 1.34. If we apply the exponent
2/3 to the volume ratio, we get (5655/3733)%/3 or 1.32. Clearly, that is a good approximation.

Regarding the physics of running, an approximation is needed for the cross-sectional area of an
athlete to estimate the foot area in contact with the ground. Using the slender cylinder approximation,
cross-sectional area may be approximated by taking the square root of volume, that is, the half-power
of volume. For the first cylinder, the cross-sectional area is 78.5in? whereas Vll/2 is 75.2in?, an accurate
approximation. For the second cylinder the cross-sectional area is 62.2in? compared to V21/ % or 61.1 in?,
again an accurate approximation.

Running

A runner moves forward with a force generated by the friction between foot and ground. The laws of
viscous friction [20] may be employed here. In Figure 1, as a runner pushes off, the forward velocity of
the foot is assumed to increase linearly from 0 to v. The backward friction force against the ground is
balanced by the opposing force f, propelling the runner forward. Viscous friction is given by (uA/h)v,
where p is viscosity (how slippery the surface is), A is the cross-sectional foot area in contact with the
ground, h is the amount of vertical compression of the shoe and running surface, while v is velocity. The
equation for f agrees with intuition in that a soft spongy surface will become compressed significantly
(large h) implying reduced friction and slower running. Similarly, a slippery surface will have a low
viscosity u, also slowing the runner. Clearly, the stiffness (or softness) of a track shoe must be tuned
to the running surface and the runner’s preferences to avoid shin splints or wasted energy. The interest
here is in the ratio of male and female output power in terms of %DT'. Since power p equals fv, and
since like constants can be cancelled,

v Aw (—W) 7

pv Am \om

The ratio of foot area is needed. Data in [15] by Toussaint regarding swimmers show that the ratio
of cross sectional body area may be approximated by the square root of the mass ratio, thus, a logical
approximation to Ay /Ay is (mw /mar)'/?, making the power ratio for runners proportional to m'/2v?.
(See the numerical example above for a slender cylinder). The resulting approximation for the power

ratio is

pw  (mw 1/2 o 2_ _— 1/2 ) %DT\ 2 .

() () -G) () ®

Next, data are needed to calculate the mass (weight) ratio for men and women. Data were obtained

for the weights of the male and female USA Olympic rowing team members for 2000 [23], the Australian
Olympic swimming team members from 1988-1994 [6] and for elite runners, jumpers and swimmers
competing in the Tokyo and Mexico City Olympics [4]. The data are remarkably consistent. The male
athletes are 26% heavier than the female athletes for each category. Thus, the ratio 1/1.26 is a reliable
estimate of myy/mys for Olympic champions, resulting in the %D P values in column three of Table 1
for running events. The average %DP is about 28%. There is about a 5% rise of %DP up to the
10000m run and a 2% drop from the 10000m run to the marathon.
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Friction viscosity = p

Figure 1: Viscous friction. Top surface area = A. Material beneath compresses by a distance h. Viscosity
is p. The forward velocity drops from v to 0 linearly as material compresses over distance h. Forward
force is equal to the force of friction.

Jumping and pole vault

It is doubtful that any long jumper thinks of the laws of ballistic trajectory while speeding down the
runway and then taking off, but clearly the jumper’s physical motion is intended to maximise the length
of the jump. If we apply ballistics [3] here, we consider the flight of a jumper who takes off with velocity v
at some angle 6 with respect to the ground as in Figure 2. The jumper starts with a horizontal velocity
of vcosf and a vertical velocity of vsin . The acceleration of gravity (¢) pulls down on the jumper, so
the vertical velocity becomes v sin @ — gt. The jumper is at the top of the jump when the vertical velocity
is zero, which happens when ¢ is (vsinf)/g. The maximum vertical height is given by vtsin — %gt2
for that ¢, or (3v*sin®#)/g. This time (to reach the maximum height) is half the total flight time, so
the horizontal distance is found by multiplying the horizontal velocity by twice that time. The result is
a distance d = (2v%sinf cosf)/g. The resulting horizontal distance equation may be used for the long
jump (LJ) and the maximum vertical height may be used for the high jump (HJ), recognising that the
takeoff angle will be higher for the HJ than for the LJ. That is,

2 .
d(LT) = 2v s1n900s9’ (9)
g
v2sin® 6

(i) =

(9b)

The applicability of these equations can be tested using HJ and LJ data. The take off angle for an
elite long jumper, measured about the centre of gravity (CQG), is about 20° [5]. To use (9a) and (9b)
for a ballistic trajectory, the angle with the ground is needed. Projecting backwards from the take off
point about 1.5m, the take off angle with the ground is about 30°. A high jumper leaps at a higher
angle: about 30° with the CG and 40° with the ground. Using an angle of 30° for (9b) and 40° for
(9b), and assuming that the velocities are equal, the ratio d(HJ)/d(LJ) is 0.238. The ratio of average
HJ to (average LJ plus 1.5m) for the last five men’s Olympic competitions is 2.36m /(8.60m + 1.5m)
or 0.234, in good agreement.

For the pole vault (PV), kinetic energy (due to the run up and jump onto the pole) is converted to
potential energy, which propels the vaulter upward [7]. From physics, kinetic energy is given by %va,
while potential energy is mgd, where m is the vaulter’s mass, g is the acceleration of gravity and d is
the vertical rise; that is, is the difference in height from the jumper’s CG (when the potential energy
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Figure 2: Ballistic trajectory of the centre of gravity. Distance d is measured from takeoff bar. Takeoff
velocity is v. Takeoff angle is 6.

from the pole begins to lift the pole-vaulter) up to the height cleared. That is

’U2

d(PV) = 5 (10)

Some approximate values may be used to test the reasonableness of (10). This equation can be
tested using the men’s average winning performance in the PV for the last eight Olympic and eight
world championships. Given that g is 9.8 ms2, if a male pole-vaulter runs about 9.5ms ! with a CG
that is 1.2m above the ground when the pole begins to rebound, the vault would be about 5.80m,
closely agreeing with the actual average of 5.99 m. If the female pole-vaulter runs about 10% slower, at
8.5ms™ ', and her CG is about 1 m off the ground when the pole begins to rebound, then the expected
vault is 4.76 m, as compared to the average of 4.65m for two world championships and one Olympic
championship. These speeds and CG locations are reasonable approximations; hence, the analytical
process seems to be reasonable.

The goal is to estimate the power ratio for these events. As before, power is the product of force
and velocity. Here, force is the weight of the jumper/vaulter, which is proportional to mass. The
relationship between distance and velocity is the same for the long jump (triple jump can be included
with the long jump), high jump, and pole vault; that is, velocity is proportional to the square root
of distance. Thus, the power ratio of force times velocity becomes proportional to md!/2, where like
constants are cancelled, assuming that male and female athletes take off at the same angle. So

bw _ mw (dW>1/2 - mw /mum (11)

pv ma \dy 1+ PDDi/100)1/2’

Using the mass ratio of 1/1.26, (11) is used to estimate the power output for the jumping and pole
vault events. For the pole vault, 1.2m is subtracted from the male performance and 1 m is subtracted
from the female performance, such that distance becomes height above the CG. See Table 1, column
three. The %DP again average about 28%. The higher value for the PV may be due to the newness
of the event (women may become more efficient in power use in future competitions) or that difference
may persist and be attributed to some loss of useful power due to lower arm strength for a typical female
pole-vaulter. More data is needed. Next comes an analysis of the power ratio for swimming.



Male/female world and Olympic winning performances, sports and rating systems 39

”~

Thrust

power output (p) = drag force x velocity (pp) + power losses (pr,)

Figure 3: The physical forces acting on a swimmer. Power losses increase kinetic energy of water around
arms and legs.

Swimming

The power output of an Olympic swim champion is of particular interest today, given the recent introduc-
tion of bodysuits, and the emergence of many claims of significantly improved swimming performance.
Figure 3 helps to illustrate the physics of swimming. Output power from the swimmer is applied to
the arms and legs, which produce some power loss (increasing the kinetic energy of the surrounding
water) and useful power (overcoming drag, causing the swimmer to move forward at velocity v) [17, 13].
Here, p is the total output power applied by the swimmer to the water which includes power loss pr,
and power applied to overcome drag, pp; that is, p = pr, + pp. Efficiency (e) may be defined as pp/p,
making pp = pe. Thus any power ratio based only on pp does not necessarily reflect the body’s output
power ratio, because e may be different for men and women. How them is drag to be analysed? In gen-
eral [18, 19], pp is the product of drag force fp times velocity v. Drag force fp equals dynamic pressure
(1pv?) times wetted surface area (A) times the drag coefficient (C'p), which corrects for differing shapes
and velocities. Here, p is the density of water.

Drag has three main causes: form drag caused by shape, wave drag formed as the water surface
is broken by the motion of the swimmer and skin drag formed as the stream of water moves past the
skin surface. For convenience, all three forms of drag may be combined into one total drag force. To
measure that drag force, a swimmer may be connected to a force-measuring device while floating in a
moving stream of water called a flume. The force exerted on the tether is the drag force, which can
be measured for various conditions of interest. For example, passive and active drag conditions may
be measured. In passive drag, the swimmer (or a dummy) is motionless. Active drag occurs when the
swimmer is employing some form of a swimming stroke.

Early data given by manufacturers of body suits, measured using passive drag, suggested significant
reduction in drag. In [19], five experts pool their knowledge to evaluate the effectiveness of the bodysuit,
based on active drag force measured under various conditions. They conclude that backstroke and
breaststroke swimmers are not enhanced. In freestyle and butterfly swimming, an unshaved swimmer
with a conventional swimsuit might have improvement, when switching to the bodysuit. Conversely,
there is no improvement in any stroke using a bodysuit compared to a shaved swimmer wearing a
conventional tight swimsuit. Some tight bodysuits could hamper performance by restricting range of
motion. A wet bodysuit, during a race of longer than 200m, could slow the swimmer. Thus, a body
suit is not at all a guarantee of improved performance, illustrating the importance of measuring and
interpreting drag force.

Let us return to the task of estimating the power ratio of male and female swimmers, where we
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estimate the total power output as applied to the water, some of which does not propel the swimmer
forward. The ratio of power for ep = pp results when common constants are canceled:
3
ew pw _ Cow Aw <v_w> (12)
e pv Cpom Am \vum

The ratio of wetted surface area for male and female swimmers in (12) can be estimated by taking
the volume ratio raised to the exponent of 2/3, as discussed earlier. How may the displaced volume
(also called displacement) be calculated? A swimmer that is less dense than water floats because the
weight of the volume of water displaced equals the weight of the swimmer and the volume displaced is
smaller than the volume of the swimmer. The displacement volume of a swimmer is given by the mass
of the swimmer, m, divided by the density of water, p, giving m/p. Density cancels out when taking
the volume ratio, therefore we can estimate Ay /Ay by (mw /mar)?/>.

Next, how about efficiency of male and female swimmers? Toussaint [16] observes that men are more
efficient because they apply greater output power, losing less to the surrounding water. Greater output
power may be assumed to be proportional to mass. Then, we can approximate ew /ey by mw /mys, so

(12) becomes

2/3 3

mw pw _ Cow <m_w> (”_W> _ (13)
my puy Com \mum UM

The output power ratio can be found from (13):

pw _ (m_w>”30D_w (v_w>3
DM mar Cpm \vm
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The output power ratio is proportional to m~Y/*Cpuv?. The power ratio proportionalities are sum-
marised in Table 3. Suppose that we use (13) or (14) to solve for the velocity ratio for a given power
ratio. The mass ratio then has a plus 1/3 exponent when moved to the left side of the equation, in
direct proportion to the male swimmers mass/weight. The implication is that for a given power ratio,
a heavier male swimmer has greater velocity advantage and not a disadvantage due to weight. This
apparently counter-intuitive result, consistent with a similar analysis of Olympic rowers [12], is a result
of buoyancy. A boat of heavier rowers will defeat a boat with the same number of lighter rowers having
the same skill level, as evidenced by Olympic winning times, because the heavier rowers have greater
drag by the 2/3 exponent of their weight (a disadvantage) but greater forward thrust by the 3/3 ex-
ponent of their weight (an advantage). The result is a relative gain equal to the 1/3 exponent of their
weight, as evidenced also in (13) and (14). Velocity increases by the 1/3 exponent of the power ratio,
which is the 1/9 exponent of the mass ratio giving an advantage in velocity /time to the heavier athlete.
Olympic winning times in rowing fit that relationship closely.

The mass/weight ratio may be approximated by 1/1.26 as discussed earlier. It remains to estimate
the ratio of drag coefficients. In [14], Toussaint published a ratio Cpw /Cpa of drag coefficients equal
to 0.83 for velocities in the 1ms™! to 1.8ms™! range. He noted that the drag difference becomes less
at higher velocities. Since Olympic winning velocities are in the 2ms™! to 2.5ms™! range, setting
Cpw /Cpar to about 0.9 seems reasonable, especially when (13) results in %DP values in column 3 of

Table 2 averaging about 28%), consistent with all the other events studied so far.
In the next section, a physiological explanation is proposed for that 28% average %D P.

2.4 Physiological explanation of power differences

Male and female athletes have a number of measurable physiological differences affecting athletic per-
formance. For example, male athletes are heavier, taller and clear a greater volume of oxygen. In
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Event Power ratio is proportional to
Running m'/2y?

Jumping and pole vault md'/?

Swimming m~13Cpuvd

Table 3: Power ratio proportionalities.

% Diff
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0 % Difference of 28% Difference % Diff
——» Menand » Physicsof ———»
Power Output Per] Women Power output Jumping | Distance
Lean Body Mass
% Diff
| Physicsof ——»
Swimming| Time

Figure 4: Summary of power output differences between male and female athletes.

what way can physiology be used to explain the 28% difference in power that exists for the various
running, jumping and swimming events just considered? Oxygen consumption is often used to measure
the amount of internal energy the body consumes. It has been observed [1] that the typical value of
40% greater maximum oxygen consumption (VO max) for elite male athletes, drops to less than 10%
when expressed per unit of lean body mass. The remaining 10% difference is explainable by known
physical and hematological factors. It is also well known that men and women burn the same number of
calories per unit of lean body mass [1]; thus a calculation of the ratio of lean body mass for female and
male athletes is a logical next step in estimating the relative quantity of calories available for generating
power, the rate that the calories are burned per unit of time. Lean body mass consists of everything
except body fat. A person having 15% body fat has 85% lean body mass.

Table 4 summarises physiological data for elite athletes. Total body weight data in [23, 6, 4], as
discussed earlier, pertains to the 2000 USA Olympic rowing team [23], the Australian Olympic swimming
team from 1988-1994 [6] and for a cross section of track and field athletes competing in the Tokyo and
Mexico City Olympics [4]. The male athletes are consistently 26% heavier than the female counterparts;
hence that result is a good estimate for Olympic champions. Similarly, body fat percentages are quite
consistent for elite swimmers as cited in [2, 22], where male swimmers have an average 11.5% body
fat compared to 20.5% for female swimmers. For runners, the studies in [1, 2] are similar, where male
runners have an average of 7.25% body fat compared to 15.5% for females.

The physiological data in Table 4 can be used to estimate the ratio of power output for female and
male Olympic champions, by using the ratio of lean body mass for women divided by lean body mass
for men. The estimated power difference is 28.7% for swimmers and 27.7% for runners. Both figures
agree quite closely with the average power differences of Tables 1-3.

The cause-effect flows of Figure 4 produce the power output differences in male/female performance
as evaluated herein. A zero %D in power output per unit of lean body mass, together with physiological
data for typical elite athletes (lean body mass and percent body fat), are consistent with a 28% difference
in power output, which (using physical laws for each sport) in turn, are consistent with all the observed
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Interaction

Type of Sport Combat Object Independent
Examples Boxing Basketball Running
Judo Soccer Shooting

Figure 5: Three ways for competitors to interact.

%D values in time (for running and swimming events) and in distance (for jumping events).

It is interesting to examine the recent history of %D P for running events. Table 5 shows the average
%D in time and average %D in power for Olympic running events from 1964 (four common events
for men and women) through 2000 (eight common events). The %D in power clearly dropped rapidly
from 1964 (32%) through 1980 (24%), a period of rapid growth in women’s sports. The pool of female
athletes increased rapidly as it became much more socially acceptable for a woman to be a successful
athlete. That pool of female athletes became increasingly more fit and had access to better coaching
and training facilities. Using data similar to that in Table 5, for the period when women were improving
more rapidly than men, it was projected by at least one paper [21] that women would be running as
fast as men by the mid-21st century. It was misleading in 1980 that there was only a 7.86% difference
in time (24% difference in power). That difference is unusually low due to the boycott of Western-bloc
male runners who tended to be the best at the time, while Eastern-bloc women, who also tended to be
the best at that time, did compete. Further, as suggested in this current paper, the %D P was actually
moving to a sort of natural equilibrium at around 28%, and not to a linear projection of 0%. Since
1980, the %D P has moved somewhat randomly around 28%.

It is important to note that while women improved faster than men from around 1964 to 1980, it
is unfair to criticise women for lower rates of improvement today. Both men and women continue to
improve, but they both improve at the about the same rate, as it should be for equality of opportunity.

3 Fundamental nature of sports

In most basic terms, a sport consists of the interaction of two teams or competitors attempting to
accomplish the goal of that sport as defined by a set of rules for deciding the winner. Similarly, each
activity aimed at that goal is further governed by additional rules. Assuming that team members cannot
change affiliation during competition, there are only three types of sports possible and only three types
of activities during each sport. That is, two competitors can interact in only three ways as in Figure 5.
First, competitors can be in direct contact with each other, where the goal is to control the opponent as
in boxing, fencing and judo. Second, competitors can be in indirect contact via some intervening object,
where the goal is to control that object and score points, as in basketball, soccer and volleyball. Third,
competitors can operate independently, where the goal is to control the athlete’s own performance for
optimal result, as in running, swimming, shooting and golf.



Male/female world and Olympic winning performances, sports and rating systems

43

‘ Reference Men Women Ratio women/men ‘
Body weight in kilograms
[23] 92.4 73.3 1/1.26
[6] 81.8 64.8 1/1.26
[4] 72.2 57.8 1/1.25
Average 1/1.26
Physiology of swimmers

Percent body fat [2] 12.0 20.0
Percent body fat [22] 11.0 21.0
Percent body fat average 11.5 20.5
Percent lean body mass 88.5 79.5
Female lean body mass 79.5/88.5

Male lean body mass 1% 0.713

= Estimated power ratio 26

Estimated percent

. . 28.7
difference in power

Physiology of runners and jumpers

Percent body fat [1] 7.5 16.0
Percent body fat [2] 7.0 15.0
Percent body fat average 7.25 15.5
Percent lean body mass 92.75 84.5
Female lean body mass 84.5/92.75

Male lean body mass —— =0.723

= Estimated power ratio 1.26

Estimated percent

. . 27.7
difference in power

Table 4: Physiological differences between elite male and female athletes and estimated percent difference

in power.

Year

Common events Percent difference in time

Percent difference in power

1964
1968
1972
1976
1980
1984
1988
1992
1996
2000

o~

12.62
13.13
10.56
9.94
7.86
10.91
9.16
9.59
11.26
9.54

Q0 00 =~ =1 = Ot Ot U =

31.97
32.76
28.72
27.73
24.36
29.28
26.48
27.17
29.84
27.09

Table 5:

Percent difference in power for winning male and female Olympic champions (1964-2000).

Activities performed during competition can also be classified into the same three categories. In
soccer (an object sport), for example, while an attacking player is setting up a corner kick, the other
players may jostle for position around the goal (combat activity). Next, when the ball is played toward



44 R. Stefani

the goal, key attacking players attempt to shoot on goal (object activity). If the goalkeeper makes a
save in front of the goal, that goalkeeper can distribute the ball into play without interference being
allowed (independent activity).

Table 6 contains 93 widely played sports, organised into combat, independent and object categories.
Sports are drawn from three sources: sports on the Olympic program, sports not on the Olympic
program but recognised by the International Olympic Committee for extensive international competition
and widely-played regional sports appearing in widely-published sports references. There are ten combat
sports, 42 object sports and 42 independent sports. Note that the five-sport modern pentathlon appears
twice because that sport has both combat and independent components, resulting in 93 different sports
but 94 entries.

The three types of sport possess fundamentally different properties that must be considered when at-
tempting to rate teams and individuals. For an independent sport, the individual’s average independent
performance may be used as a reliable predictor of future competition. Conversely, a combat sport is
usually decided by subjective judging, so that further subjective rankings are often used. A competitor
in an object sport has an objective score as an outcome, but that score depends on interaction with the
other competitors; hence, the most sophisticated rating systems tend to be employed for object sports
to establish a separate ratings for each competitor. Sports rating systems are discussed in the next
section.

10 Combat Sports 42 Independent Sports 42 Object Sports

Aikido Alpine Skiing Nordic Combined | American Football —Lacrosse
Boxing Archery Orienteering Australian Rules Netball
Fencing Athletics (Track Roller Skating Football Paddleball
Judo and Field) Rowing Badminton Pelota Vasca
Karate Automobile Racing  Rhythmic Bandy (Jai Alai)
Kendo Ballroom Dancing Gymnastics Baseball Pool/billiards
Modern Pentathlon | Biathlon Sailing Basketball Raquetball
(Fencing) Bobsled Shooting Bowls Roller Hockey
Taekwondo Bowling Short Track Bridge Rugby Union and
Wrestling Canoe/Kayak Skating Canadian Football Rugby League
Wushsu Cross-country Ski Skeleton Sled Checkers Shinty
Cycling Ski Jumping Chess Soccer
Diving Skydiving Court Handball Softball
Equestrian Snowboarding Cricket Squash
Figure Skating Speed Skating Croquet Table Tennis
Freestyle Skiing Surfing Curling Team Handball
Golf Swimming Darts Tennis
Gymnastics Synchronised Field Hockey Tug of War
Lifesaving Swimming Gaelic Football Underwater
Luge Trampoline Horseshoes Hockey
Modern Pentathlon  Triathlon Hurling Underwater Rugby
Motorcycle Racing ~ Water Skiing Ice Hockey Volleyball
Mountaineering Weightlifting Korfball Water Polo

Table 6: Widely played sports (Modern Pentathlon appears twice).

4 Fundamental nature of rating systems

This paper seems to be organised in sets of three. We examined three types of events (running, jumping
and swimming) and three types of sports (combat, object and independent). In this section, a triumvi-
rate again appears in that there are three types of audiences and three types of rating systems. It is
important to recognise that the success of a rating system is affected by the likes and dislikes of each
audience.
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Rating systems have been extensively analysed as in [10, 9, 11]. There are at least three types:
subjective, accumulative and adjustive. There are also three types of audiences: the general non-
technical public, organisers of tournaments and the technical audience seeking sophisticated ratings.
Each audience tends to be most comfortable with one of the rating systems.

A subjective rating system utilises some poll of authorities as in boxing, American college football
and soccer. In the USA, two polls are widely accepted indicators of the top 25 American college
football teams: one poll is of sports writers (by Associated Press) and one poll is of coaches (by USA
Today/ESPN). Since 1956, France Football has used a poll of sports writers to select the best male soccer
player in Europe. Since 1991 the international soccer federation, FIFA, has used a poll of national team
coaches to select the best male soccer player of the world. Since 2001, FIFA also honours the best female
soccer player in the world by a similar poll. It is common for sports writers to rate the performance
of soccer players on a 10-point scale. The wide acceptance of these ratings speaks to the acceptance
of subjective polls by the general non-technical audience. It is also true that this audience has an
interest in the simplest of adjustive systems, a simple average. It is likely that this audience trusts those
systems with which each person is most familiar: calculating simple averages for salary and expenses,
for example, and the typical sports enthusiast subjectively selects favourite players and teams.

An accumulative system causes points to increase monotonically due to success in competition.
Points may be assigned due to the final position in the competition and the importance of the compe-
tition, for example. The current men’s and women’s professional tennis tours (ATP and WTA respec-
tively) seed players into tournaments with accumulative systems. The world ski federation, FIS, uses
accumulative systems for alpine skiing and cross-county skiing. The systems are used for start listing
and for recognising yearly champions. There is only one way an accumulative rating can become smaller:
when a moving window is used (perhaps for one calendar year), in which a rating can drop when a good
result is aged away and replaced by a lesser result. Tournament organisers favor these systems. Such
systems encourage good athletes to enter many competitions to maximise available points. Although
these systems can put opponents in a rank order, that order does not predict the expected margin of
victory, but that is not a stated purpose.

Adjustive ratings are the most sophisticated. These ratings rise or fall as future performance is
compared to expected performance and the ratings are adjusted (up or down) appropriately. The
technical audience understands that the goal is accurate prediction, perhaps for gambling, fantasy game
play or just better enjoyment. These systems utilise such methods as least squares and exponential
smoothing.

Two case studies serve to illustrate the part played by an audience. The ATP and the WTA pro-
fessional tennis tournament directors both changed from adjustive systems to the current accumulative
systems in 1990 and 1996, respectively. ATP and WTA directors cited the same reason. Under an ad-
justive system, they felt that top rated players were entering fewer tournaments later in the tour year,
especially if there had been any injury or minor illness, fearing that their averages would drop, affecting
ranking and appearance fees. The accumulative system does not penalise a poor result, since the rating
does not change in that case. A player can safely enter a tournament to regain form. Directors of both
tours released follow up evaluations indicating increased entries by top professionals.

The competition among (supposedly) amateur American college football teams generates prodigious
television revenues. At the end of the regular season, over 20 “bowl games” are played. These games do
not constitute a tournament, since each team plays only one game. The four most prestigious of those
games (called the Rose, Orange, Sugar and Cotton Bowls) distribute to each team about US$12 million,
indeed big business. The credibility of those four games lies in the public acceptance that the competing
teams are the eight best of more than 100 major college teams, and television advertising revenue is
similarly sensitive to viewer acceptance. One bowl game, on a rotating basis, is designated the national
championship game. Since 1998, Bowl Championship Series (BCS) ratings have been used to select the
top eight teams, including the top two teams who play for the national championship. That system
includes the two major subjective polls, a panel of computer ratings and a third component intended to
include strength of schedule. In spite of the supposed importance of using a broad-based system, three
times that composite system differed from the polls and three times efforts were made (or suggested)
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to bring the composite system into alignment with the subjective polls.

In 1998, one computer rating system preferred Kansas State (third overall but fourth in the polls)
and the next year, additional computer ratings were added so that no one system (supposedly) would be
important enough to overrule the polls. In 2000, a late season victory over a top team by the University
of Miami went unrewarded by the computers, considering each game equal, while the polls, sensitive
to late season victories, moved Miami to second place and into public acceptance. Overall, Miami was
placed third and not included in the national championship game. For 2001, a special reward was
added for victory over top rated teams, justified by the Miami case of the previous year. In 2001, there
were four evenly matched teams. The final overall rating placed the first poll-rated team (Miami) and
the fourth poll-rated team (Nebraska) into the national championship game, won by Miami, partially
justifying the system, but leaving concern that the fourth poll-rated team might have won. As of April
2002, the BCS Committee is considering schemes to further reduce the influence of computer rankings
as compared to the poll ratings. Newspaper commentary is highly negative toward computer-based
systems. Evidently, the general public considers the polls to be the accurate measure of ability.

As we develop ratings that make sense to us, the technical audience, it is well to consider the likes
and dislikes of other audiences.

5 Conclusions

Men and women produce the same energy and power output per unit of lean body mass. Based on data
for elite athletes, including total body mass and percentage of body fat, women produce 28% less power
output than men, exactly the value arrived at by applying the laws of physics to running, jumping and
swimming events. Thus, observed performance differences disappear when corrected for differences in
lean body mass. Put another way, if events could be handicapped based on lean body mass, men and
women should finish in a dead heat.

Only three types of sports and three types of sports activities are possible. These are combat
sports with direct contact between opponents, object sports with indirect contact via an object (such
as a basketball) and independent sports with separate performance. It might be said the athlete must
control the opponent, an object or the athlete’s own self, respectively.

There are three types of rating systems and three audiences. The general public trusts subjective
rating systems (and simple averages). Tournament organisers favour accumulative systems. The tech-
nical audience favours sophisticated adjustive systems, capable of predicting future performance. The
creator of a rating system should understand the likes and dislikes of these audiences.
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Abstract

Least squares regression is used to model the first innings performances of teams in test cricket in
order to establish batting and bowling ratings, a common home advantage and a country effect.
Logistic regression techniques are then used to model match outcomes based on a team’s first innings
lead, innings duration, home advantage, batting and bowling ratings and the country effect. It is
shown that the factors that impact most significantly on the outcome of a match are a team'’s first
innings lead home team performance and innings duration. A team’s first innings lead is found to
more likely shape a win rather than a draw or a loss whereas the longer the duration of the first
innings the more likely a match will end in a draw. It is shown that the home team, on average,
needs to establish a lead in excess of 93 runs to have a better than even chance of winning, whereas
the away team needs to establish a lead in excess of 115 runs to have the same chance. There is
a better than an even chance of a draw for a first innings duration in excess of 1165 minutes (or
approximately 277 overs). It is also shown that the home team is more likely to win a match rather
than lose or draw, which suggests that the home team has a distinct winning advantage over the
away team. There is some evidence suggesting that teams gained an advantage by batting last.

1 Introduction

Test match cricket is currently played between the ten International Cricket Committee (ICC) test-
playing nations, with Bangladesh being a very recent inclusion. A test match is scheduled to finish
within a five-day period and comprises a maximum of two innings per team. There are four possible
outcomes: a win, loss, draw or tie. A tied result is an extremely rare event and has only occurred a
handful of times throughout the history of test cricket.

Outcomes in a test cricket match are difficult to predict because they are dependent on a wide range
of interrelated factors. By applying standard modelling techniques we will initially focus on the factors
that affect the performance of teams in their first innings and then determine which of these factors, if
any, have an impact on the outcome of a match. The factors to be analysed are a team’s first innings
lead, home advantage, team batting order, innings duration, attack and defence ratings and the country
effect We have considered all 371 completed matches from seasons 1990 through to 2001. By “completed
matches”, we mean those matches that produced a result independent of weather conditions. Note that
as Bangladesh had only played in three matches throughout the study period their results have not
been included in the analysis.
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2 Exploratory data analysis

Throughout the analysis Team 1 and Team 2 refer to the teams batting first and second respectively
in the first innings. Subsequently, unless Team 2 has been forced to follow on it will also be the team
batting last in the second innings. Table 1 provides a descriptive summary of the first innings results
for each team. Overall, Team 2 won 140 matches and lost 121. There were 110 draws. The results show
that Team 2 had a winning advantage over Team 1. However, using a chi-square goodness of fit test
to compare the expected and actual number of wins, losses and draws for Teams 1 and 2 suggests that
the observed differences are not significant (p-value = 0.251). The observed differences are due solely to
random variation. However, the data refute the accepted wisdom that being first in the batting order
provides a team with a winning advantage. Conversely, the data show that the team batting first has
a tendency to lose rather than win or draw.

The first innings batting performances by India (as Team 1 and 2), on average, are substantially
higher than the majority of nations but are much more variable. This underscores India’s lack of batting
consistency.

Team Mean first innings score  Standard deviation
Team 1 Team 2 Team 1  Team 2
Australia 358 368 131 134
South Africa 354 333 106 106
India 352 342 165 108
England 298 309 121 119
Pakistan 296 326 110 129
Sri Lanka 289 320 107 165
West Indies 284 312 131 133
New Zealand 283 286 111 104
Zimbabwe 262 263 131 70
Overall 312 321 128 125

Table 1: Descriptive summary of the first innings in test cricket.

3 Modelling the first innings

In a typical test match the first innings batting side aims to score as many runs as possible before losing
the ten wickets at their disposal, whereas the bowling side aims to dismiss the batting side by taking
all ten wickets for a total that is as small as possible. Assuming that both teams are endeavouring to
maximise their first innings lead the score that is achieved provides a measure of the relative batting
and bowling strength of the two teams. Beyond the first innings, however, playing strategies are harder
to predict because teams become more reactionary and tend to customise their style of play. Using
techniques similar to those adopted by Harville and Smith (1994), Clarke and Norman (1995), de Silva,
Pond and Swartz (2000) and Clarke and Allsopp (2001), a team’s first innings score in a test match
played between the batting team ¢ and the bowling team j at a location k& with home ground [ and
batting order m is modelled as

Sijkim = A+ a; — dj + ¢ + hit + by + €ijkim, (1)

where the indices ¢, j, k, I = 1, ..., 9 represent the nine ICC test-playing nations and m = 1, 2
indicates whether a team batted first or second. The response variable s;jxim, signifies a team’s first
innings score; A represents the expected score between average teams on a neutral ground; a; and d;
signify the first innings batting (attack) and bowling (defence) ratings of teams i and j, respectively;
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cr is the country effect term, which represents the advantage gained by teams playing in a particular
country. The common home advantage enjoyed by the batting side is represented by h;;, such that

1=
hil:{h, if I =1,

0, otherwise.

b, ifm =1,
bm = .
0, otherwise.

Finally, €;jrim is a zero-mean random error. The error term is included because two competing teams
will not necessarily repeat their first innings performances the next time they meet. Subsequently, a
least squares regression model is fitted to the scores to quantify the parameter estimates for each of
the explanatory variables. For convenience, S0, a; = 900, 2321 d; =900 and 30_, ¢, = 0, which
assumes that a team’s first innings average batting and bowling ratings are each 100 and the country
effect rating is 0. Accordingly, a rating greater than 100 signifies that a team has performed above
average whereas a rating less than 100 signifies that a team has performed below average.

The batting, bowling and country effect estimates are outlined in Table 2. The parameter estimates
associated with the expected score by an average team on a neutral ground, the common home advantage
and any advantage gained by batting first are estimated to be 306, 28 and —11 runs, respectively. The
p-value for the common home advantage parameter is 0.002, which suggests that the home team, on
average, gained a significant first innings runs advantage, whereas the p-value for the batting first
parameter is 0.208, which suggests that there is no significant batting order effect.

The long-term dominance of Australia and South Africa in test match cricket is clearly evident,
with both teams enjoying batting and bowling ratings substantially above average. All other teams
have under-performed in one or both of these areas. Notably, India has performed exceptionally well
with the bat but has been let down by relatively poor bowling performances. The negative country
effect ratings for India, South Africa and the West Indies suggest that the batting teams playing in
these countries were disadvantaged to some degree by the conditions. This latter point highlights
India’s excellent batting form, particularly when playing at home.

Team Batting Bowling Country
rating rating  effect rating
India 148 73 —14
Australia 142 145 7
South Africa 132 143 —16
England 96 75 10
Pakistan 94 105 1
West Indies 93 118 -2
Sri Lanka 84 96 8
New Zealand 70 81 3
Zimbabwe 42 63 3

Table 2: First innings ratings.

To show how the model can be applied, assume Australia is playing South Africa at home, with
Australia batting first. The model predicts Australia’s first innings score to be 306 + 142 — 143 4 28 —
1147 = 329 runs, whereas South Africa’s first innings score is estimated to be 306 + 132 —145+7 = 300
runs, an advantage to Australia of 29 runs. However, if the match were to be played in South Africa
and Australia remains the team batting first, the model predicts Australia’s first innings score to be
306 + 142 — 143 — 11 — 16 = 278 runs, whereas South Africa’s first innings score is estimated to be
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306 + 132 — 145+ 28 — 16 = 305 runs. This time there is an advantage to South Africa of 27 runs. This
indicates that with Australia and South Africa being both highly rated teams factors that are indirectly
related to a team’s batting and bowling performance such as winning the toss or home advantage could
have a potentially significant impact on match outcomes.

4 Modelling the second innings

Since the match result is a categorical variable, a logistic regression model is used to model the outcome
of a match. The response variable is the match outcome for Team 1 and the explanatory variables are
Team 1’s lead, the cumulative duration of Team 1’s and Team 2’s innings, a home team indicator where
1 indicates that Team 1 is the home team and O otherwise, the difference in the batting and bowling
ratings for competing teams and the country effect. The model is expressed as

In (17—7> — Bo + Bl + Bot + Bah + Bada + Bsdi + Boc + €, 2)

where the response variable v represents the probability of a win for Team 1. The parameter [ signifies
the lead enjoyed by Team 1; ¢t represents the innings duration parameter; h indicates whether Team 1
was the home team; d4 and dp represent the rating differential parameters for the batting and bowling
teams; ¢ is the country effect parameter; and € is a zero-mean random error. We will use nominal
logistic regression to investigate the three comparisons: win/loss, draw/loss and win/draw. The results
are outlined in Tables 3 to 5.

The analysis suggests that the first innings lead contributes significantly to the shaping of a win
rather than a loss or a draw. There is also strong evidence suggesting that the home team is also
significantly more likely to generate a win rather than a loss or a draw. There is also evidence to
suggest that the cumulative time taken to complete each of the first innings is more likely to produce
a drawn result rather than a win or a loss. There is some marginal evidence suggesting that Team 2,
which generally bats last, is more likely to manufacture a loss rather than a drawn result.

Parameter Coefficient  p-value
Bo Intercept term —0.1598 0.818
31 Lead 0.013797 0.000
B> Time —0.0005405  0.499
B3 Home 1.0362 0.003

Bs Rating differential (bat 1 — bowl 2)  0.004729 0.401
B5 Rating differential (bat 2 — bowl 1)  —0.008445  0.123
B¢ Country effect 0.02493 0.241

Table 3: Results for comparison of win/loss.

Parameter Coefficient  p-value
Bo Intercept term —4.5721 0.000
81 Lead 0.007060 0.000
B> Time 0.0045660  0.000
B3 Home 0.9953 0.002

B4 Rating differential (bat 1 — bowl 2)  0.001076 0.835
Bs Rating differential (bat 2 — bowl 1) —0.009724  0.063
B¢ Country effect 0.02504 0.209

Table 4: Results for comparison of draw/loss.
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Parameter Coefficient  p-value
Bo Intercept term 4.4123 0.000
B1  Lead 0.006736 0.000
B> Time —0.0051065  0.000
B3 Home 0.0409 0.899

B4+ Rating differential (bat 1 — bowl 2) 0.003654 0.475
Bs Rating differential (bat 2 — bowl 1) 0.001279 0.800
Bs Country effect —0.00011 0.995

Table 5: Results for comparison of win/draw.

To get a sense of the effect of batting first we need to restate the model without the time parameter.
This is necessary since when the time parameter is set to zero it has little meaning in the context of
investigating any perceived advantage for Team 1. The model is re-expressed as

m<Tl;>=ﬁm+mw+@h+ﬁmA+ﬂmB+ﬁw+a 3)

Setting all parameters to zero in effect represents Team 1’s advantage at the completion of the first
innings with all things being equal, i.e. no lead, playing on a neutral ground in a neutral country and
equal ratings in the batting and bowling departments. Using nominal logistic regression, the parameter
estimates for the comparison of a win/loss, draw/loss and win/draw are, respectively, —0.5446 (p-value
= 0.026), —0.2837 (p-value = 0.194) and —0.2610 (p-value = 0.283). With all things being equal, there
is a significant batting order effect, with Team 1 more likely to lose a match rather than win. This
suggests that generally the team batting last in the match shows a tendency to win rather than lose.
Note that this slightly contradicts the notion outlined in Section 2, which suggested that the effect was
not significant. This possibly highlights the cumulative effects such as home advantage, a first innings
lead and batting and bowling strength may have on a team’s overall performance.

5 Analysis of the first innings lead and innings duration

The influence of the first innings lead established by Team 1 can be modelled as

1n< Jm >=ﬁ0+ﬁll+ﬁzh+em, (4)

I_Vm

where 7, is the probability of a particular match outcome for Team 1 with m = 1, 2, 3 for a win,
draw and loss respectively. If a loss for Team 1 signifies the reference event, then, using nominal logistic
regression, the probability of a win for Team 1 when Team 1 is the home team is expressed as

_ exp(Bo + Bili + Ba2hy + €1)
= P} - (5)
1+ Em:l exp(ﬂo + ﬂllm + ﬂth + €m)

The probability of a draw is

_ exp(fo + Pils + Baho + €2)
T2 = 2 . (6)
1+ Em:l exp(ﬂo + ﬂllm + ﬂth + €m)

The probability of a loss (the reference event) is

1
1+ 2 exp(Bo + Bilm + Bolum + €m)

V3
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Figure 1: Plot of the probability of winning for the home and away teams.

The results of the analysis are provided in Tables 6 and 7. Notably, the parameter estimate for the lead
term in both instances is significant, which confirms that after a team has established a first innings
lead they are more likely to win or draw rather than lose a match. Similarly, the home team term is
also significant, which suggests that the home team is also more likely to win or draw rather than lose
a match. This suggests that the home team has a distinct winning advantage over the away team.

Parameter Coefficient  p-value
Bo Intercept term  —0.4458 0.056
31 Lead 0.013040 0.000
B2 Home 0.8160 0.011

Table 6: Comparison of win/loss.

Parameter Coefficient  p-value
Bo Intercept term  —0.2261 0.285
B1 Lead 0.007436 0.000
B2 Home 0.8916 0.002

Table 7: Comparison of draw/loss.

If we let the lead term be zero, so that both teams have the same first innings score, and we apply
formulas (5), (6) and (7), then the respective probabilities of a win, draw and loss for Team 1, when
Team 1 is the home team, are 0.330, 0.443 and 0.228. These results suggest that after the completion of
the first innings, with all things being equal, the home team displays a tendency to win or draw rather
than lose a match. A drawn result is the more likely outcome. However, if the lead is increased to 100
runs, say, then the respective probabilities of a win, draw or loss are 0.512, 0.392 and 0.096. As the
first innings lead increases, the probability of a win for the home team markedly increases, whereas the
probabilities of a draw or loss decrease. To determine the lead the home team needs to establish in
order to have a better than even chance of winning we let 74 = 0.50 and the lead in runs be z, such
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Parameter Coefficient  p-value
Bo Intercept term 4.2245 0.000
B1  Time —0.004312  0.000

Table 8: Comparison of win/draw.

Parameter Coefficient  p-value
Bo Intercept term 4.2242 0.000
B1  Time —0.0041396  0.000

Table 9: Comparison of loss/draw.

that
exp(—0.4458 4+ 0.013040x + 0.8160)

1+ exp(—0.4458 + 0.013040z + 0.8160) + exp(—0.2261 + 0.007436x + 0.8916)

This gives £ = 93 runs. This suggests that the home team, on average, needs to establish a lead in
excess of 93 runs to have a better than even chance of winning. If we repeat this for Team 1 when
Team 1 is the away team, this gives x = 115 runs. Figure 1 provides a plot of the probabilities of
winning for leads up to 200 runs. Clearly, the probability of winning increases for both the home and
away teams as the first innings lead increases, with the home team having the upper hand.

The first innings duration can be modelled as

0.50

ln<17’” )zﬁo+ﬁltm+em, (8)
— Tm

where 7, is the probability of a particular match outcome at home with m =1, 2, 3 for a win, loss or
draw. If a draw signifies the reference event then using nominal logistic regression the probability of a

draw is
1

1+ 2 exp(fo + Butm + €m)

Tables 8 and 9 provide a summary of the parameter estimates. Both the parameter estimates for
duration are highly significant, with the negative coefficients confirming that the combined duration of
the first innings is more likely to shape a draw than a win or a loss. Figure 2 provides a plot of the
probability of a draw for Team 1 for durations up to 2000 minutes. Clearly, the likelihood of a draw
increases as the duration increases. To determine when there is a better than even chance of a draw let
the duration be t, such that

9)

V3

1

0.50 =
1+ exp(4.2245 — 0.004312¢) + exp(4.2242 — 0.0041396¢)

giving ¢t = 1165 minutes. We calculated the average duration of an over to be 4.2 minutes, with 1165
minutes equating to approximately 277 overs. This suggests that there is a better than even chance of
a draw for a duration in excess of approximately 1165 minutes (or about 277 overs). Conversely, there
is a better than even chance of a result for durations less than 1165 minutes.

6 Conclusions

Of the many factors shaping test cricket, there is strong evidence to suggest that the factors which impact
most significantly on the outcome of a match are a team’s first innings lead, home team performance
and the duration of the first innings. Clearly, a team is more likely to win a match after they have
established a first innings lead, with the probability of winning increasing as the lead increases. To have
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Figure 2: Plot of the probability of a draw against the total time for the first innings.

a better than even chance of winning the home team, on average, needs to establish a lead in excess of
93 runs, whereas the away team needs a lead in excess of 115 runs to have the same chance.

The home team is more likely to win a match rather than lose or draw, which suggests that the
home team has a distinct winning advantage over the away team. There is some evidence to suggest
that teams gain an advantage by batting second and so are possibly advantaged by batting last in the
second innings. This contradicts the accepted wisdom that batting last is a disadvantage. This is an
area that encourages more detailed research.

The time taken to complete each of the first innings contributes more to the shaping of a drawn
result rather than a win or a loss, with the likelihood of a draw increasing as the duration of the first
innings increases. For durations in excess of 1165 minutes (or approximately 277 overs) there is shown
to be a better than an even chance of a draw.
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Abstract

The Brownlow medal is the highest individual honour that can be achieved by Australian Football
League (AFL) players. It is based on the umpires votes to the three best players (3 for first,
2 for second, 1 for third) in each of the 176 home and away matches for a season. An ordinal
logistic regression model retrospectively applied to past data has been used to identify specific
player performance statistics from each match that can aid in the prediction of votes polled. By
applying this model to present data it is possible to objectively assign leading players a probability
of winning the Brownlow medal. Over the past two AFL seasons (2000 and 2001), the authors have
successfully used this approach to identify the leading contenders for the Brownlow medal.

1 Introduction

During the 2000 Australian Football League (AFL) season, discussion arose between the authors as to
the best possible way to predict the winner of the Brownlow medal, both before and during the actual
count. The aim was to complement existing predictions for football, tennis and other sports on our web
site www.swin.edu.au/sport. The original idea was to collect votes from the media, and then perform
a resampling simulation to estimate the chances of winning. The concept was to update predictions on
the night, by gradually replacing simulated results with real ones. However, we decided to include a
large amount of match performance statistics readily available, as we felt that a mathematical modelling
process might well assist in the objective assignment of a player’s probability of polling votes.

Based on data collected from the 1997, 1998, and 1999 seasons an ordinal logistic regression model
was constructed and applied to the 2000 season. Predicted votes for each match were then tallied over the
season to provide players predicted totals for the year. During the course of the 2000 Brownlow count,
Swinburne Sports Statistics provided updated online predictions that combined predicted and actual
totals throughout the course of the evening. Following considerable success and media attention [1, 2]
this modelling process was further enhanced for the 2001 season. With the addition of an extra year’s
data and several additional variables, this modelling process was able to clearly identify the three leading
candidates for the 2001 Brownlow medal, and was widely publicised prior to the count [3, 4]. This paper
describes the modelling process. All analysis was performed using SAS version 8.0.!

ISAS Institute Inc, Cary, NC, USA.
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2 Database

A database was constructed that comprised data collected from each regular season AFL match played
between 1997 and 2001 (880 games). For each game, in addition to team scores, an array of individual
match statistics are readily available, both in the newspapers and via the internet. An example is given
in Table 1.

Name TK | TH | DI | RE | IN50 | MA | HO | CL | TO | FF | FA | TK | G
J. Akermanis 9 | 10 | 19 1 0 5 1 2 1 1 0 0 1
M. Ashcroft 10 8 | 18 1 2 2 0 9 0 1 1 0 0
C. Bolton 7 2 91| 3 2 1 0 1 1 0 0 0 0
D. Bradshaw 4 1 5 1 0 0 0 0 1 1 3 0 3
R. Champion 5 2 7! 3 0 3 0 0 3 1 2 3 1
D. Cupido 2 2 41 2 0 0 0 0 2 0 2 2 1
S. Hart 6 5 | 11 3 1 0 0 1 0 0 0 1 0

Key: TK = total kicks, TH = total handballs, DI = disposals, RE = rebounds, IN50 = times inside
50 metre zone, MA = marks, HO = hit outs, CL = clearances, TO = turnovers, FF = frees for, FA =
frees against, TK = tackles, G = goals.

Table 1: Example of individual match statistics.

In addition, the AFL web site gives a list of the six best players from each side. The data were
combined with team statistics, such as match result (win or loss), team score, margin and number of
scoring shots.

3 Univariate analysis

Initially, a descriptive statistical analysis was undertaken, with each possible statistic investigated in
isolation to determine its predictive capability.

Disposals: The number of disposals (kicks + handballs) that a player accumulates during the course
of a match is the strongest predictor for polling votes. This is reflected in the fact that the leading
possession winner for each match has a 51% chance of polling votes, with the leading possession winner
of the winning side having a 64% chance of polling votes.

Goals: Not surprisingly, the number of goals that a player kicks during the course of a match is a
significant predictor for votes. What is surprising is that the number of goals does not carry as much
weight as some may think, with only 40% of players kicking five goals for the game managing to poll
votes! If a player kicks six goals, his chance of polling increases to 62%, and with seven goals, chances
of polling increase to 79%. Only one player in the past five years has kicked eight or more goals and
not been awarded a vote. Figure 1 shows the chance of polling votes depending on the number of goals
kicked.

Won the game / Margin of victory: Umpires have a clear tendency to award votes to the winning
side, with 92% of 3-votes being awarded to a player from the winning side. Similarly, 83% of 2-votes
and 76% of 1-votes are awarded to players from the winning side. To a lesser extent, the margin of
victory is also important in determining the voting probabilities.

Hit outs: Ruckmen have traditionally polled well in the Brownlow medal, as a good ruckman can
have a big influence on the match outcome without gathering a lot of possessions. Not surprisingly, the
number of hit outs that a ruckman has during a match is a strong predictor for polling votes.

Quality of disposals: Although the number of disposals that a player has is the strongest predictor
for votes, this variable fails to take into account the quality of the disposals. As the quality of a disposal
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Figure 1: Relationship between polling votes and kicking goals.

is subjective, it will always be difficult to measure accurately. Rather than measure the quality of the
disposal, the authors have endeavoured to measure the quality of the player having the disposal. By
constructing a prediction model based solely on the number of disposals, it is possible to identify players
that poll more votes than quantity alone predicts. By then measuring the proportion of times that this
occurs for each player, it is possible to gain an indirect measurement of the quality of the player in
question. This measure was included as a predictor.

Best players: Any prediction model based solely on player statistics would fail to take into account
how well a player has performed in comparison to his direct opponent, which would in turn clearly
bias against defenders. To compensate against this, the best players in each team as given by the AFL
web site are included in the model, and are a significant predictor for votes, with only 12% of players
awarded 3-votes not being named in their team’s best six players. Similarly, the order in which players
are named is also of importance. This can be seen from Figure 2, with the best named player from the
winning side having a 60% chance of polling votes, whereas the best named player from the losing side
only has a 21% chance of polling votes.

Distinct appearance: It can be statistically shown that any player with a distinctive appearance has
a slightly higher chance of polling votes in comparison to their non-distinctive teammates. Distinctive
appearance has been quantified as any player with red or blond hair or a significantly darker or lighter
skin colour. An indicator variable was used to flag these players.

Team scoring shots: If a team has a lot of scoring shots on goal, this acts as an indirect measure of
the number of players in the side that are playing well, as both midfielders and forwards are required
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30.00% {— ___
20.00% ]
10.00% B
0.00% J_,__-_,__-_,__-_,_L_,_I:I__
1 2 3 4 5 6 Not named

Figure 2: Chance of AFL website best players polling votes.
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to be successful for shots on goal to eventuate. Consequently, the greater the number of scoring shots,
the more players that are playing well and thus the more difficult it is for any given player from that
side to poll votes.

Rebounds / Frees for / Marks / Inside 50s: Rebounds — the number of times a player rebounds the
ball from defence into attack. Frees for — the number of free kicks awarded to a player. Marks — the
number of marks that a player takes. Inside 50 — the number of times that a player propels the ball
inside the forward 50 metre arc. Although only having small effects on a player’s probability of polling
votes, all of the above four variables are statistically significant predictors.

Variable Univariate OR  Multivariate OR* Lower95"  Upper95f
Disposals 1.21 1.13 1.12 1.15
Goals 1.67 1.45! 1.40 1.50
Best players 1.76 1.29 1.26 1.32
Win 5.67 4.72 3.98 5.56
Hit-outs 1.03 1.05 1.04 1.06
Quality of disposal 1.01 1.01 1.01 1.01
Marks 1.39 1.08 1.06 1.10
Margin of victory 1.02 1.03 1.02 1.03
Team scoring shots 1.08 0.97 0.96 0.98
Rebounds 1.17 1.08 1.05 1.11
Distinct 2.49 1.41 1.24 1.61
Frees for 1.50 1.11 1.06 1.16
Inside 50 1.43 1.05 1.02 1.07

OR represents the odds ratio associated with a one unit increase in the variable in question.
*Multivariate odds ratio adjusting for all other variables.
tUpper and lower 95% confidence intervals for the multivariate odds ratio.

Table 2: Odds ratios for polling votes.

4 Ordinal logistic regression

Using the number of votes polled as the outcome, an ordinal logistic regression was applied to the past
data to ascertain the relative importance of all predictors in predicting votes polled. Each variable in the
model was found to be statistically significant at a level of p = 0.001. The percentage of the explained
variation attributable to each predictor is shown in Figure 3. Disposals, goals, best players and being on
the winning side are the most important variables, contributing between them over 75% of the explained
variation. Table 2 gives the odds ratios for each predictor. Thus playing in the winning team increases
a player’s odds of polling nearly five fold, while every additional goal that a player kicks during a match
increases his odds of polling votes by 45%. Having a distinctive appearance also increases the odds of
polling by over 40%.

5 Predicting the winner
By applying this model to current season data it was possible to assign to each player for each match

a probability that they would poll one, two or three votes. Probabilities were standardised so that the
match probabilities summed to one. A predicted value for the number of votes was created by the
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Figure 3: The relative importance of variables in the multivariate model as determined by the WALD
chi-square statistic.

following formula:
Predicted votes = 3 x Prob(3 votes) + 2 x Prob(2 votes) + Prob(1 vote).

By then tallying each player’s predicted number of votes, it was possible to derive a predicted total
for the season. Investigation of the predicted totals for the leading 25 players indicated that the error in
the number of votes was found to be approximated by a normal distribution with a standard deviation
of approximately five votes. By simulating 10,000 seasons and counting the number of occasions that
each player would have won based on his predicted total, it was possible to give each of the leading
players a probability that they would win.

6 Model accuracy

By ranking players in each game according to their predicted probability, it is possible to measure the
accuracy of the modelling process. For the 2001 season, Figure 4 shows the chance of a player ranked
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Figure 4: Probability of polling votes according to model rankings.
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Name Chance of  Predicted Actual Ranked 1st three votes Highly 2 & 3 votes
winning (%) total total by model received rated received
A. McLeod 17 18.6 21 6 6 5 7
M. Voss 15 18.1 19 4 3 3 7
J. Akermanis 14 17.9 23 6 5 7 9
N. Buckley 8 16.6 14 6 3 7 5
S. West 6 15.6 8 4 0 3 4
B. Cousins 6 15.5 18 5 4 5 6
B. Ratten 5 15.2 8 5 2 3 3
J. Bowden 5 15.0 9 6 2 5 3
W. Campbell 4 14.3 4 3 0 1 1
J. Hird 4 14.2 5 3 0 3 2
N. Stevens 4 14.0 11 3 3 3 3
N. Lappin 3 13.6 4 3 1 3 1
S. Crawford* 0* 12.6 14 5 3 4 5
S. Black 2 12.6 12 1 2 2 4
M. Lloyd* 0* 12.0 15 5 3 4 5
B. Ottens 1 12.0 6 3 2 3 2
J. Johnson 1 11.9 15 2 4 2 5
B. Harvey 1 11.4 16 1 2 1 6
A. Koutoufidis 1 11.3 8 4 2 4 2
P. Bell 0.5 10.5 11 3 3 0 4
S. Grant 0.5 10.5 14 3 4 2 5
W. Tredrea 0.5 10.4 8 3 2 1 3
S. Goodwin 0.5 10.3 10 1 1 2 4
L. Darcy 0.4 9.3 11 1 3 1 4
D. Cresswell 0.3 9.2 8 4 2 3 2

*Players suspended during the 2001 season are ineligible to win the Brownlow.

Predicted total: By aggregating the predicted probability for each player for each match, it is
possible to derive a predicted total for the year. Although the final vote total must be an integer,
the predicted total has been left to one decimal place to indicated slight differences between
players.

Chance of winning: By simulating results 10,000 times it is possible to derive a player’s probability
of winning based on his predicted vote total.

Ranked 1st: Based on the fitted model, it is possible to rank the 44 players in each match according
to their probability of polling votes. Ranked 1st represents the number of matches in which each
player is ranked as the leading player on the ground.

Highly rated: If a player has a greater than 50% chance of polling two or three votes for a match
then he is considered to have played a game that is highly rated.

Table 3: Predicted leading vote getters for 2001 Brownlow medal.

by the model polling votes. Thus the leading player on the field, as ranked by the modelling process,
had a 68% chance of polling votes, with the second ranked player having a 45% chance of polling votes.

The predicted total also offered a clear indication towards performance, with any player with a total
of two or more having an 87% chance of polling votes, and a 74% chance of polling at least two votes.
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7 Results and discussion

Table 3 shows a comparison of the model prediction and actual results for the leading vote getters in
the 2001 Brownlow. It can be seen that the ordinal logistic regression approach offers an excellent
insight into the leading players for the Brownlow medal with 15 of the leading 25 predicted players
actually finishing in the top 25. Based on these predictions it was the authors’ belief that the ultimate
winner would come from one of the top three ranked players. As it turned out, the top three predicted
players were the top three vote pollers. Although Akermanis was given a slightly lesser chance than
both Voss and McLeod to win, he was quickly elevated to favouritism as the count progressed, as he
polled more votes than predicted early in the count. For the second year in a row, the interactive
process of updating a player’s predicted total by combining his predicted with actual votes proved to
be a tremendous success, with the accuracy of the prediction process constantly improving as the count
unfolded.

Although interactive betting throughout the course of the Brownlow was not available for the 2001
Brownlow medal count, the ordinal logistic regression model provided an objective price setting approach
prior the commencement of the count. Of the three leading contenders, Andrew McLeod was a 6 to 4
favourite (40% chance) with the bookmakers, Michael Voss was second favourite at 3 to 1 (25% chance)
while Akermanis was the model’s recommended value bet of the threesome at the odds of 11 to 1 (8%
chance). A further significant application of the ordinal model was the determination of team totals
for the Brownlow. Although relatively large differences can occur between individuals’ predicted and
actual totals, when aggregated over the team the level of accuracy was found to improve substantially.

It was interesting to note that several of the leading players that did not poll as many votes as
predicted by the model were in actual fact high vote pollers from the previous season (Buckley, West,
Ratten and Hird). This suggests the possibility that following a successful year the expectations of
quality players may subconsciously be raised by umpires.

Further improvement can be expected in future years, with preliminary results indicating that model
improvement may be achieved with the use of an Inverse Normal link function for the logistic regression
as opposed to the default Logit link function. When considering all players, the modelling approach is
quite accurate with the predicted seasonal total explaining over 50% of the variation associated with
the actual total. Unfortunately, amongst the leading players, this process is not quite as accurate, as
the winning players will inevitable poll more votes that the model can predict. This modelling process
can be seen to have clear applications for bookmakers, punters and fans who are keen to ascertain the
final result prior to the completion of the count.
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Abstract

This paper demonstrates the use of Microsoft® Excel to generate the probability of winning a tennis
match and mean length of the remainder of the match conditional on the state of the match. Pre-
vious models treat games, sets and matches independently. We show how a series of interconnected
sheets can be used to repeat these results. We also set up a sheet which can give the required
statistics using the full match, set and game score as the state. The exercise could form an interest-
ing and useful teaching example, and allow students to investigate the properties of tennis scoring
systems.

1 Introduction

Many papers have investigated the characteristics of various scoring systems, particularly in racquet
sports. The game of Lawn Tennis has a history of changing formats. Although it uses a basic nested
system of points, games, sets and matches, there is much variation within that basic structure. Matches
can be one set, or best of three or five sets, sets can be first to six, eight or ten games, advantage or
non-advantage, and games can be the traditional four point advantage, or seven or ten point tiebreakers.
We even have the recent innovation at the 2001 Australian Open mixed, where the third set becomes
a single tiebreaker game. This innovation is extending into the Victorian Tennis Association pennant
this year.

The basic principles involved in modelling a tennis match are well known. A Markov chain model
with a constant probability of winning a point was set up by Schutz [4]. While such a model is acceptable
within a game, a model which allows a player a different probability of winning depending on whether
they are serving or receiving is essential for tennis. Statistics of interest are usually the chance of each
player winning, and the expected length of the match. Croucher [1] looks at the conditional probabilities
for either player winning a single game from any position. Pollard [3] uses a more analytic approach
to calculate the probability for either player winning a game or set along with the expected number of
points or games to be played and their corresponding variance.

Most of the previous work uses analytical methods, and treats each scoring unit independently. This
results in limited tables of statistics. Thus the chance of winning a game and the expected number of
points remaining in the game is calculated at the various scores within a game. The chance of winning
a set and the expected number of games remaining in the set is calculated only after a completed game
and would not show for example the probability of a player’s chance of winning from three games to
two, 15-30.

This paper discusses the use of Microsoft® Excel to repeat these applications using a set of interre-
lated spreadsheets. This allows any probabilities to be entered and the resultant statistics automatically
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calculated or tabulated. In addition, more complicated workbooks can be set up which allow the cal-
culation of the chance of winning a match and the expected number of points in the remainder of the
match at any stage of the match given by the match, set and game score. These allow the dynamic
updating of player’s chances as a match progresses.

2 Simple Model

We explain the method by first looking at the simple model where we have two players, A and B, and
player A has a constant probability p of winning a point. We set up a Markov chain model of a game
where the state of the game is the current game score in points (thus 40-30 is 3-2). With probability p
the state changes from (a,b) to (a + 1,b) and with probability 1 — p it changes from (a,b) to (a,b+ 1).
Thus if P(a,b) is the probability that player A wins when the score is (a,b), we have

P(a,b) =pP(a+1,b) + (1 — p)P(a,b+1).

The boundary values are P(a,b) =1ifa =4, b <2, P(a,b) =0if b =4, a < 2. The boundary values
and formula can be entered on a simple spreadsheet. The problem of deuce can be handled in two ways.
Since deuce is logically equivalent to 30-30, a formula for this can be entered in the deuce cell. This
creates a circular cell reference, but the iterative function of Excel can be turned on, and Excel will
iterate to a solution. Alternatively, it is easily shown that the chance of winning from deuce is

p2

P2+ (1-p)?

Entering this formula removes the need for iteration. Table 1 shows the results obtained, using a value
of p = 0.54. It indicates that a player with a 54% chance of winning a point has a 60% chance of winning
the game. Note that since advantage server is logically equivalent to 40-30, and advantage receiver is
logically equivalent to 3040, the required statistics can be found from these cells.

A score
0 15 30 40  game

0 0.60 0.74 0.87 0.96 1
15 044 059 0.76 091 1
Bscore 30 |0.25 039 058 0.81 1
40 | 0.09 017 0.31 0.58
game 0 0 0

Table 1: The conditional probabilities of A winning the game from various scorelines.

The mean number of points in the remainder of the game, M (a,b), is handled similarly as shown in
Table 2. All boundary points become 0 and the recurrence relation becomes

M(a,b) =1+ pM(a+1,b)+ (1 —p)M(a,b+1).
The formula for the number of points from deuce is
2
P+ (1-p)?*

A similar spreadsheet can be set up for a set. The constant probability of winning a game can be
obtained from the (0,0) cell of the previous sheet. Similarly for a match. Thus we obtain six connected
sheets—entering the chance of winning a point results in the chance of winning a game and expected
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A score
0 15 30 40 game

0 6.7 56 4.0 2.1 0
15 59 52 4.1 23 0
B score 30 45 44 40 28 0
40 25 2.7 3.1 4.0
game | 0 0 0

Table 2: The expected number of points remaining in a game from various scorelines.

number of points in the remainder of the game conditional on the game score, the chance of winning
a set and expected number of games in the remainder of the set conditional on the set score, and the
chance of winning a match and expected number of sets in the remainder of the match conditional on
the match score.

In this case, the sheet suggests a player with a 54% chance of winning a point, has a 59.9% chance
of winning a game, a 76.3% chance of winning a tiebreak set, a 85.9% chance of winning a three-set
match and a 91% chance of winning a five-set match.

Excel has excellent facilities for building up one or two way tables. Table 3 shows some of the match
statistics for chances and expected lengths of winning games, sets and matches with the probability of
winning a point ranging from 0.5 to 1. We use the following notation:

p(Game) = probability of winning a game,
M (Game) = expected number of points in a game,

p(Set) = probability of winning a tiebreak set,
M (Set) = expected number of games in a tiebreak set,
p(Match) = probability of winning a 5 set match,
)

M (Match) = expected number of sets in a 5 set match.

Magnus and Klassen [2] tested some often-heard hypotheses relating to the service in tennis. They
collected data on 481 matches played in the men’s singles and women’s singles championships at Wim-
bledon from 1992 to 1995. We will compare some of their statistics with our model. In men’s singles
with two seeded players, on service they won 67% of the points and 86% of the games. In women’s
singles with two seeded players, on service they won 57% of the points and 67% of the games. Both
these results agree with our model as highlighted in Table 3.

3 Two-parameter model

For more realistic models the process is essentially the same, just a little more complicated. We now
have two parameters, p4 and pp:

pa = probability of A winning a point if A is serving,
pp = probability of B winning a point if B is serving.

Since the chance of a player winning now depends on who is serving, we need to introduce this into
the state description. The state of a game becomes the score and whether the player is serving or
receiving. Thus we need two sheets for a game, one for player A serving and one for player B serving.
Similarly we need two sheets for the set score, and one for the match score. The formula and boundary
conditions are similar. The main difference is that adjacent cells in terms of the Markov chain are not
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p | p(Game) M (Game) p(Set) M (Set) p(Match) M (Match)
0.50 0.50 6.8 0.50 9.7 0.50 4.1
0.52 0.55 6.7 0.56 9.6 0.75 4.0
0.54 0.60 6.7 0.62 9.3 0.91 3.7
0.56 0.65 6.7 0.68 9.0 0.98 34
0.57 0.67 6.6 0.73 8.8 1 3.3
0.58 0.69 6.6 0.74 8.6 1 3.2
0.60 0.74 6.5 0.79 8.1 1 3.1
0.62 0.78 6.4 0.83 7.7 1 3
0.64 0.81 6.3 0.87 7.4 1 3
0.66 0.85 6.1 0.90 7.1 1 3
0.67 0.86 6.1 0.92 7 1 3
0.68 0.88 6.0 0.93 6.9 1 3
0.70 0.90 5.8 0.95 6.7 1 3
0.80 0.98 5.1 1 6.1 1 3
0.90 1 4.5 1 6 1 3

1 1 4 1 6 1 3

Table 3: Match statistics depending on the probability of winning a point.

necessarily adjacent on the spreadsheet, since players alternate service games. We will also use the
following notation:

p'4y = probability of A winning a game if A is serving,
Py = probability of B winning a game if B is serving.

The following probabilities are applied: p4 = 0.6, pp = 0.58.
The conditional probabilities for an advantage set are given in Tables 4 and 5 for each player serving.
The probability of A winning an advantage set from 6 games all, A or B serving, is
PP
1= pypp + (1 =p)(1 - pp)

By substituting pa = 0.6 in our simple model, p/y = 0.74. Similarly by letting pg = 0.58, pz = 0.69.
Substituting these figures into the equation above gives 0.55.

A score
0 1 2 3 4 5

0.57 0.75 0.82 093 0.97 1
049 057 0.77 084 0.96 0.99
0.29 048 056 079 087 098
0.20 0.25 046 0.58 0.82 0.92
0.06 0.15 020 044 055 0.88 1
0.02 0.03 0.09 013 041 0.55 0.88
0 0 0 0 0 0.41 0.55

e el =2

B score

DU W N~ O

Table 4: The conditional probabilities of A winning an advantage set from various games scores if A is
serving.
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A score
0 1 2 3 4 5

0.57 064 0.82 088 0.97 0.99
0.37 0.57 065 084 091 099
0.29 035 056 065 087 094
0.12 0.25 031 0.56 0.67 092
0.06 0.08 0.20 0.26 0.55 0.69 1
0.01 0.03 0.04 0.13 0.17 0.55 0.69
0 0 0 0 0 0.17 0.55

el E=2)

B score

DU W N = O

Table 5: The conditional probabilities of A winning an advantage set from various game scores if B is
serving.

As expected, the probabilities of winning from 6—6, 5-5 or 4-4 are the same regardless of who is
serving. Also worth noting is that P(winning set | a score with an even number of games with A serving)
= P(winning set | a score with an even number of games with B serving).

4 Six-parameter model

Instead of building up independent sheets linked through the probability of winning a point, game or
set, we can build a model in which the state of the game is match score, set score, game score and
whether the player is serving or receiving. Also included are first and second serves. With this model, a
typical question could be: What is the probability of player A winning a five-set match with the current
score at 2 sets to 1, 3 games to 4, 30-15 and fault one?

We now have six parameters: first serve % for each player, winning % on first serve for each player
and winning % on second serve for each player.

The same techniques of deriving a formula for the last point of a game or set and allowing recurrence
relations to work out the remaining points are applied.

We will take the statistics from the 2002 Australian Open men’s singles final, where Thomas Jo-
hannson defeated Marat Safin 3—-6, 6-4, 6-4, 7-6 (7—4). Let Johannson = player A, Safin = player B.
The results were:

1st serve % for player A = 56%,
1st serve % for player B = 63%,
Winning % on 1st Serve for player A = 86%,
Winning % on 1st Serve for player B = 67%,
Winning % on 2nd Serve for player A = 53%,
Winning % on 2nd Serve for player B = 54%.
Table 6 represents the conditional probabilities of player A winning a five-set match at a set all, 4-4
in the third set with player A serving. It highlights the importance of a first serve on certain points.

At 30-40 a first serve in would give a 77% chance of winning the match, whereas 3040 fault drops to
74%. Particularly in tiebreaks, this margin has greater emphasis on the outcome of a match.

5 Conclusions
Through the use of Excel we have shown how to produce the conditional probabilities of either player

winning the match and the expected number of points, games and sets remaining from any position
within the match.
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A score
0 0/2nd 15 15/2nd 30 30/2nd 40 40/2nd game
0 0.84 0.83 0.84 0.84 0.85 0.85 0.85 0.85 1
15 0.81 0.80 0.83 0.82 0.84 0.84 0.85 0.85 1
B score 30 0.77 0.76  0.80 0.78 0.82 0.81 0.84 0.84 1
40 0.71 0.70 0.74 0.71 0.77 0.74 0.82 0.81
game 0 0 0 0 0 0 0

Table 6: Conditional probabilities of winning a game from various scorelines.

The use of “if statements” often used in Excel would allow us to enter what type of match it is
(tiebreaker or advantage, three or five sets) and the current position in the match, to give us the corre-
sponding probabilities and the expected length remaining. This idea would make accessible the relevant
statistics for a match in progress. Microsoft® Excel now incorporates Visual Basic for Applications
(VBA), enabling the modelling of a tennis match to be powerful and still relatively easy to implement.
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Abstract

This paper looks at various issues that are of interest to the sports gambler. We begin with an
overview of sports betting and how two simple ideas can be used in the context of sports wagering.
We then turn to questions concerning the management of one’s bankroll. In particular, an expression
is obtained for the distribution of the final bankroll using fixed wagers with both infinite and finite
resources. Also, the Kelly method is discussed in the case of simultaneous bets placed under various
gambling systems; a computational algorithm is presented to obtain the Kelly fractions.

1 Introduction

Despite its illegality in many jurisdictions, gambling on the outcome of sporting events is a common
activity. For example, Crist (1998) states that Americans illegally wager over $100 billion annually on
professional and college sports. On the 1999 Superbowl alone (the championship game of the National
Football League), approximately $87 million was wagered legally in Las Vegas Sportsbooks (Ordine,
2000).

Sports gambling has been increasing over the years and it is likely that the trend will continue as more
states and provinces are eager to share in the huge profits that have and can be made. One particular
avenue for growth is sports gambling via the internet (Haywood, 2000). Whereas such internet sites
are illegal in the United States and in Canada, they are legal and operational in various Caribbean and
Latin American countries and in Australia. Internet gambling yields various murky legal issues such as
the determination of where the wager is actually placed (e.g. in one’s home in North America where the
activity is illegal or in the offshore country).

In this paper, we put ethics and legal issues aside and take a look at various practical problems
associated with sports betting. We are primarily concerned with issues involving wagering systems that
have a positive expected gain. To a lesser extent, the results are also applicable to certain financial
investments corresponding to an investor who engages in numerous transactions. Many fundamental
probabilistic results concerning optimal systems for favourable games are reviewed in Thorp (1969).

In Section 2, we provide an introduction to pointspread wagering where we emphasise that it is
possible to develop winning systems. Two simple ideas are provided that may assist in the development
of winning systems. In Section 3, we investigate the results that one might achieve with fixed wagers
under various conditions. Although the results only involve binomial calculations and a simple exten-
sion of the classical drunkard’s walk problem, they are practical and we have not seen them recorded

*Swartz’s work was partially supported by a grant from the Natural Sciences and Engineering Research Council of
Canada. This work was initiated during Beaudoin’s tenure as a 2000 NSERC summer student at Simon Fraser University.
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in the sports gambling literature. Moreover, much of the work concerning the gambler’s ruin and re-
lated problems was developed long ago with an emphasis on challenging mathematics and approximate
solutions. Our approach is based on the realisation that today nearly everyone has a computer on
their desk. In Section 4, we turn to fixed percentage wagering and how one ought to wager in various
practical scenarios. The results in this section are extensions of the Kelly system (Kelly, 1956) and
require some computation. In Section 5, we provide a concluding discussion with advice applicable to
typical Sportsbook scenarios where upper limits on wagering are imposed.

2 A primer on betting the pointspread

There are many types of wagers that can be placed on sporting events (McCune, 1989). Perhaps the
most common is a wager placed against the pointspread. For example, consider a contest between a
strong team (Team A) and a weak team (Team B). Whereas popular sentiment may overwhelmingly
favour Team A to win, there is typically no concensus on the magnitude of the victory. To facilitate
interest in wagering on such a match, a posted line may appear as

Team A -] —-110 (1)
Team B +1 —110.

The line in (1) is based on American odds and stipulates that a wager of $110 placed on Team A returns
the original $110 plus an additional $100 if Team A wins by more than [ points. Alternatively, a wager
of $110 placed on Team B returns the original $110 plus an additional $100 if Team B wins or if Team B
loses by less than [ points. In the case where Team A wins by exactly [ points, the original bets are
returned. The quantity [ is referred to as the pointspread.

We point out a few variations in the above example. First, different odds may be given. For example,
odds of —120 stipulate that a winning wager of $120 returns the original $120 plus an additional $100.
When the odds are positive, this means that an event is less likely. For example, odds of +140 stipulate
that a winning wager of $100 returns the original $100 plus an additional $140. Second, wagers can be
made in multiples or fractions of the amounts discussed. Third, a nearly equivalent expression of (1) is
based on Furopean odds and appears as

Team A -] 191 (2)
Team B +1 1.91.

Here, a winning wager of = dollars returns x(1.91) dollars. In the case of a $110 wager, the return is
$110(1.91) = $210.10 which is nearly equivalent to the $110 + $100 = $210 situation described above.

Having discussed the betting procedure, it is important to understand the objective of the bookmaker,
i.e. the individual or organisation that posts the line and collects the bets. In (2), suppose that a total
of y dollars is wagered on Team A and a total of y dollars is wagered on Team B. In this case, the
bookmaker collects 2y dollars, and given that a winner is decided, the bookmaker pays out y(1.91)
dollars. The bookmaker has made a profit of y(0.09) dollars regardless of the winning team and the
percentage profit (vigorish) is calculated as y(0.09)/(2y) — 4.5%. Thus, in the case of the line in (2), the
bookmaker’s objective is to balance the total bets placed on Team A and on Team B for this guarantees
a profit. It is this fact that suggests opportunities for the gambler since the bookmaker is not trying to
achieve an optimal line from the point of view of prediction. Rather, the bookmaker is trying to assess
public opinion (i.e. determine the pointspread [) so as to balance the bets. A gambler then “simply”
needs to (a) have more insight on reality than the rest of the gambling public and (b) win often enough
to overcome the vigorish. Unlike most mechanical games (e.g. roulette), it is evident that the possibility
exists to develop winning strategies when gambling on the outcome of sporting events.

A simple heuristic for wagering is to develop some procedure for constructing pointspreads. When
one’s personal pointspread differs sufficiently from the pointspread in the posted line, this signals a
condition to wager. We note in passing that the stated heuristic of comparing one’s personal pointspread
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to a bookmaker’s pointspread is an application of subjective probability. In fact, it is difficult to imagine
how such an application can be reconciled in terms of a frequentist notion of probability. The discussion
highlights one of the distinctions between sports gambling and typical casino gambling. In typical casino
gambling, mechanical devices (e.g. roulette wheels, card shuffling, etc.) are the underlying mechanisms
that generate probabilities. In the absence of mechanical errors, the probabilities are known, and the
games are constructed such that a gambler’s expected returns are negative. There are few exceptions
to this (e.g. card counting in poker) and the exceptions seem difficult to capitalise upon.

Finally, we mention two other types of wagers commonly available in the same match involving
Team A and Team B. First, odds are usually posted for Team A winning outright (i.e. without a
pointspread). Odds are also posted for Team B winning outright. Second, there is usually a total ¢
associated with the match together with under and over odds. An under wager wins if fewer than ¢
total points are scored in the match and an over wager wins if more than ¢ total points are scored in
the match. If exactly ¢ total points are scored, the wagers are refunded.

2.1 Making use of rounding

In basketball and football it is common to have lines such as (2) with only the pointspread [ varying
from game to game. With wagers placed on these lines it is natural to ask with what probability p does
a bettor need to pick winners in order to realise a long term profit? Suppose that a bettor places wagers
of = dollars. The answer is obtained by solving the expected value inequality

(1.91z —z)p + (—x)(1 —p) > 0,

which yields p > 1/1.91 & 0.52356. Now, given that tossing a coin to determine whether you bet on
Team A or Team B (i.e. no knowledge whatsoever) gives p = 0.5, it appears plausible to certain sports
enthusiasts that it should not be too difficult to pick winners slightly more than 52% of the time. More
often than not, this intuition is misleading.

However, something can be done to lower the probability p required to attain long term profits.
Certain internet sites for sports gambling round their payouts to dollar amounts but require a minimal
wager (suppose $6). In this case, it is not difficult to show that the optimal wager is $16. Note that
this is not restrictive to the bettor who places large wagers as the bettor can simply make consecutive
bets of $16. Under a successful $16 wager, the return is $16(1.91) = $30.56 — $31. In this scenario,
solving the expected value inequality

(31— 16)p + (—=16)(1 —p) > 0

yields p &~ 0.51613. Although the improvement 52.4% — 51.6% = 0.8% may appear small, it can lead to
meaningful differences over hundreds of wagers.

We note that this observation concerning rounding may be exploited further in sports such as baseball
where different odds are often given for Team A and Team B. For example, consider the actual line

Team A —[ 1.5882
Team B +1 2.5.

A winning wager on Team A yields $6(1.5882) = $9.5292 — $10. From the perspective of the general
betting public, a wager on Team A should be just as profitable as a wager on Team B. Therefore Team A
should win with probability ¢ where (1.5882)g = (2.5)(1 — q) giving ¢ = 0.6115161 and the expected
gain from betting $6 on Team A is ($10 — $6)g + (—$6)(1 — ¢) = $0.1151607. This results in a positive
expected return of 1.92.

2.2 Constructing pointspreads in basketball

In certain sports, it is often sudden and unpredictable events that determine the outcome of a game.
For example, consider the impact of fumbles and interceptions in football, and home runs and errors in
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baseball. For a sports bettor who wants to get a probabilistic handle on a game, it seems that basketball
is an ideal sport. A game of basketball can be modelled for the most part as a series of independent
and identical trials (i.e. possessions) where the trials alternate between two teams and on each trial,
the team with the ball tries to score. In a National Basketball Association (NBA) game, each team
has roughly 100 possessions and scores with a success percentage ranging from 35% to 65%. Another
probabilistic attraction of the NBA is that many games are played (82 for each of the 29 teams in the
regular season) resulting in many opportunities to test a betting strategy.

Suppose then that Team A is playing Team B on Team B’s home court. A bookmaker constructs
an initial pointspread by calculating Team A’s average score A over a specified number of games, by
calculating Team B’s average score B over a specified number of games and then letting the initial
pointspread for Team A be B — A. The initial pointspread for Team B is A — B. Now recalling that
the bookmakers objective is to balance the total bets on Team A and Team B, he uses his personal
experience to modify the initial pointspread. Factors that modify the pointspread include the home
court advantage, key injuries to players, results of previous matches between the two teams, recent
performance of the teams, team popularity, etc.

One of the things that we have noticed is that the initial pointspread calculation does not adequately
account for the strength of the opposition. This seems particularly important for the 1999-2002 NBA
seasons where it is widely accepted that the Western Conference has been stronger and we note that a
given team plays teams from within its conference more often than teams from outside its conference.
The statistical methodology which can address this issue is regression analysis. We therefore propose
the model

Yijk = Tj — Ti + A + €,
where y;; is the points scored by home team j minus the points scored by the visiting team ¢ in its
kth match, 7; is a strength variable for the jth team, ) 7, = 0, A is the home court advantage and
€iji is an error term. Therefore an improved initial estimate of the pointspread by which home team j
is favoured over team ¢ is 7; — 7; + A where the estimates are obtained using multiple linear regression.
We note that we have experienced some success in modifications of this general approach.

3 Fixed wagers

In fixed wagering, without loss of generality, a gambler bets a fixed amount $1 on the outcome of each
match. Given a gambling system with probability 0 < p < 1 of choosing winners and European odds
# > 1 in each of the matches, we are interested in the profit P, that is realised after placing m bets.

Consider first the simplest situation where the gambler has an infinite bankroll. In practice, this
may correspond to a gambler who only bets within his means (i.e. is always prepared to lose). For
example, a gambler may be willing to lose m dollars over a fixed period consisting of m bets. In this
case, given m independent bets, it is straightforward to write the binomial probability

Prob [Py =6~ 1)~ (m = )] = (") A=p)" . =0, im.
From the binomial distribution, we have E(P,,) = m(fp — 1) and Var(P,,) = #*>mp(1 — p). The normal
approximation to the binomial then suggests
P,, ~ Normal (m(6p — 1),6*mp(1 — p))
from which probabilities may be calculated. For example, the probability of realising a profit after m

bets is
Prob[Pp > 0]~ @ | 2P —D )
62mp(1 — p)

It is also possible to introduce a continuity correction of —m + |(m/6)|0 + 6/2 in the calculation of
Prob[P,, > 0].
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We now turn to the more complicated situation where the gambler has an initial bankroll of By
dollars. We make calculations a little simpler by assuming that if, after bet i = 1, ..., m, the gambler’s
bankroll is 0 < B; < 1, then the gambler’s next bet remains $1 and he is able to cope with a loss on
this bet by borrowing 1 — B; dollars. We say that a gambler is ruined and ceases betting if B; < 0 for
anyt =1, ..., m.

We concentrate on the probability of ruin and observe that this is a simple extension of the classical
drunkard’s walk problem. In this case, the drunkard, instead of taking steps of size £1 each with
probability %, takes an upward step of size # — 1 with probability p and a downward step of size —1
with probability 1 — p. For a discussion of a more general version of the problem, see Section 14.8 of
Feller (1968). The probability of ruin within m bets corresponds to the probability that the drunkard
hits the absorbing barrier —By within m steps. We therefore define P, , ; as the probability that the
drunkard hits the barrier within the next n steps given that j of the first m — n steps are upward steps.
By the law of total probability, it is easy to obtain the recursive relationship

Prmn,j = PPmn—1,+1 + (1 = p)Pm -1, (3)

provided that P, , ; # 1. Therefore, the probability of ruin within m bets is given by P, ;0 and the
probability is obtained via the recursion (3) and using the conditions Py, ,,; = 1if j < (m —n — By)/6
(i.e. the drunkard has currently hit the barrier) and Py, ; = 0if j > (m—By)/@ (i.e. it is impossible for
the drunkard to hit the barrier in the remaining n steps). Naturally, recursions can be computationally
intensive (both memory and time), and that is the case here. For example, using # = 1.91, By = 5 and
p = 0.56, we obtain P35 35,0 = 0.216 and this requires 20 minutes of computation on a SUN workstation
based on a Fortan implementation of the recursion.

A source of the tremendous inefficiency in the recursion programming is the repetition of calculations.
For example, the calculation of P, ,,; and P, , j—1 may both invoke P, ,—1 ;. We avoid this problem
by considering the entries {Py, . ;} as a tree structure where the quantity of interest Py, 0 is the
parent at the top of the tree and the first row of children are P, ;,—1,0 and Py, ;m—1,1. We construct the
tree by first obtaining the bottom row Py, 0, j =0, ..., m and working upward along rows using the
recursion (3) and the accompanying conditions. Note that memory issues are minimised by overwriting
the current row of the tree on the row of its children. Repeating the calculation from above using a
Fortran implementation of the tree structure gives an immediate solution on a SUN workstation. In
fact, increasing the number of bets to m = 500 still gives a nearly immediate solution Psgg 500,0 = 0.428.

The distribution of the final bankroll B,, is also expressible via a recursion. We assume By > 0 and,
fori=1,...,mand j =0, ...,1, we define

Qj,ifj = Prob [Bz = B() +](0 - ].) - (Z —j)]

= Prob [j upward steps, i — j downward steps, no ruin]

_ )P+ (1=p)Qji—j1, j>(i—Bo)/b,
0> ] S (Z_BO)/ea

where Qoo =1 and Q_1,y = Q,—1 for all k. This also forms a tree structure where @);;_; is the jth
entry along the ith row from the top of the tree. In this case, we construct the tree beginning with the
top element Q0 and work downward along rows, where the last row {Q;jm—j;,j =0,...,m} gives the
probabilities of interest. We note that the probability of ruin P, 0 is also available in this approach
since Py om0 + E;n:[) Qjm-j =1

4 Fixed percentage wagers
In simple fixed percentage wagering, a gambler bets a fraction 0 < f < 1 of the bankroll on the

outcome of a single match. When the outcome of the match is determined, the gambler resumes
fixed percentage wagering on the new balance. Assuming the infinite divisibility of money, one of the
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immediate attractions of fixed percentage wagering is that the bettor never goes bankrupt, provided
that f < 1.

In the context of information theory, Kelly (1956) provided a neat result that is often quoted but
misused in gambling circles. Given a gambling system with probability 0 < p < 1 of choosing winners
and European odds 6 > 1, Kelly showed that the “optimal” betting fraction is

. po—1
=91 (4)
provided that p > 1/6. For example, consider a system that historically picks winners 54% of the time
with the standard European odds payout of # = 1.91. In this case, the optimal betting fraction is 3.45%
of the bankroll. The Kelly criterion is optimal from several points of view; for example, it maximises the
exponential rate of growth and it provides the minimal expected time to reach a preassigned balance
(Breiman, 1961).

Breiman (1961) investigated the properties of betting systems and considered a more general wa-
gering scenario than the simple situation discussed above. The generality of Breiman’s problem did not
yield the derivation of solutions nor sharp statements concerning the uniqueness of solutions.

We are concerned with restricted problems that are of real interest to the sports bettor. For example,
it is likely that a sports bettor would like to bet on several matches in a single day. If the bettor uses
the Kelly fraction (4) on n such matches where nf* > 1, then it would be possible to go bankrupt on
that day.

We therefore consider the situation where on day j = 1, ..., m, the gambler wishes to place nj;
wagers on matches with European odds 6; and where the probability of picking winners is p;, i = 1,

, k. For example, it is possible that a bettor has a system for betting the pointspread and another
system for betting totals (i.e. k = 2). The question arises as to what are the optimal betting fractions

e f]*fk on day j, where n;; wagers are placed with a fraction fj; of the bankroll, ¢ =1, ..., k7
Given an initial bankroll By, the bankroll at the completion of day j is

nj1 njk k k Y(z)
I 1I ((1 - Zn]-ifji>B,-1 +iji0ifji3,-1> , (5)
z;1=0 =0 i=1 =1

where

Y(;L’)— 1, ifinZZUji, ’L.ZI,...,]{/‘,
~ 10, otherwise,

and the random variable X;; denotes the number of winning wagers of type i on day j. Therefore, we
see that except for one term in the product (5), all remaining terms are equal to unity. Note also that
the first term in the outer parentheses is the balance of the bankroll not bet in a given day and we
require Ele nj;i fji < 1 to prevent the possibility of bankruptcy.
Assuming (often reasonably) that Xji, ..., X; are independent with X;; ~ Binomial(n;;, p;), ¢ = 1,
, k, we are concerned with the maximisation of G = G(fj1,..., fjr) = Ellog(B;/B;_1)], where

nj1 Njk k k
G = Z S Z Y(:L’) log (1 — Z njifji + Z arﬂelfﬂ>
z;1=0 =0 i=1 i=1
nj1 Njk k
= Z 3 <H <nﬂ> P (1 —Pi)”“z""> log <1 + > fiilwjib — ”ji))- (6)
=0 i=1

From (6), the first and second derivatives of G are given by

D YR o8 1 P e
Ji

20 @0 L4320 fiizgib —nji)
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and
0’G
0fjin Ofjis

Nnj1 Njk

k
= Z ... Z (Z];[l (ij)pfﬂ(l _pi)nji—acji) _(56]11911 - n]ll)(x]7/2012 - n]lz),

k
2520 a0 (1+ 22 fii(wji0; — nji))?

Giyis =

for i, i1, 42 = 1, ..., k. Now, G is a continuous function defined on the intersection of [0,1)* and the
halfspace Zle njifji <1. When p; > 1/6;,i =1, ..., k, it is not difficult to establish that

(a) Gi >0when f;; =0,i=1,..., k;
(b) Gii, < 0 everywhere for iy, 42 =1, ..., k; and
(¢) G = —oc0 on the bounding plane Ele njifji = 1.

A little analysis then shows that there is a single critical point lying in the interior of the region and

this point is a global maximum. This establishes the uniqueness of f7, ..., f7. Since G (0) =0, we
also have that G(f*) > 0.

The shape of G yields a simple algorithm which is guaranteed to find f};, ..., k- We begin by
initialising an interior point f;; = 1/ Zle nj;, ¢ = 1, ..., k. To obtain the root of G| along the first
coordinate direction, bisection is carried out using the lower starting value fﬁ) = 0 and the upper
starting value f](f ) which intersects the plane. After the first coordinate is updated, the procedure is
repeated along the coordinate directions 2, ..., k. The loop in this sequential procedure is repeated until

the movement in the point is sufficiently small. The maximum has then been obtained. For example,
consider a betting system where k = 2, nj;1 =2, njy = 3, p1 = 0.545, p» = 0.585 and 6, = 6, = 1.91.
The algorithm gives f7; = 0.0428 and f}, = 0.1245. In passing, we comment that convergence difficulties
were experienced with more sophisticated algorithms taken from certain numerical libraries. The lesson,
as always, is that it is good to use available information (e.g. the shape of GG) in optimisation problems.

As previously discussed, ruin (i.e. bankruptcy) is not really an issue with fixed percentage wagering.
In fact, what is more important to a gambler is the distribution of the final bankroll B,,. Referring

to (5), we can express the final bankroll as

k k
B, = <]- - anzfmz> B, 1+ Zszezfszmfl
i=1 =1
m k
= By H (1 + Z f],(XJZBZ - nﬂ)> . (7)
i=1

=1

In assessing a system before the season begins, expression (7) is useful for simulation purposes. Of
course, the bettor does not know in advance the number n;; of wagers of type ¢ on a given day j, and
therefore some distribution on n;; is assigned. The simulation then proceeds by generating nj; and then
generating X;; ~ Binomial(nj;,p;), 7 =1, ..., m, 4 =1, ..., k. Using (7), this determines a single
variate B,,; whence the procedure is repeated to build up the distribution of B,,.

Now one might casually assume that, under repeated wagering, a large sample result may hold and
that the distribution of the final bankroll B,, in (7) is approximately normal. To see that this may be
far from the truth, consider the following simple situation where m = 162, k = 2, p; = 0.56, 6; = 1.91
and nj; = 1 for all ¢, j. This corresponds to a successful betting system for the 2000/2001 NBA season
where the bettor places a single wager on each of two types of bets every day of the season. The optimal
Kelly fraction (4) is f}; = 0.0761. Using the simulation procedure based on 1000 simulations, Figure 1
provides a histogram of the final bankroll Bigz using an initial bankroll By = $100. We observe a
distinctly non-normal distribution with a very long right tail. However, it is clear that log B,,, is a sum
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Figure 1: Histogram of the final bankroll based on 1000 simulations.

of random variables. Therefore the Central Limit Theorem suggests that log B,, may be approximately
normal. Using the same example as above, Figure 2 provides a histogram of log Big2. The histogram
appears more normal and the log data passes the Anderson—Darling goodness-of-fit test for normality
yielding a p-value exceeding 0.5.

To obtain some quick insight on the final bankroll B, without simulation, we calculate the mean
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Figure 2: Histogram of the logarithm of the final bankroll based on 1000 simulations.



Studying the bankroll in sports gambling 7

E(B),). Using the formula involving conditional expectations,

k m
B(Bn) = By (1 5 Bl f) (s — 1)) | ®)

i=1

where it is assumed that the expectation in (8) does not depend on the day j.

5 Discussion

Now suppose that you have a “winning” system. How should you bet? Typically, Sportsbooks assign
an upper limit on wagering. Since the Kelly approach has an optimal rate of growth, it seems logical to
begin with the Kelly system using fixed percentage wagering until the upper limit is attained. As long
as the Kelly system prescribes a bet exceeding the upper limit, use fixed wagering with the upper limit.

Sportsbooks also typically assign a lower limit on wagering. For some internet sites, the lower limit is
so low (e.g. $1 at www.intertops.com) that it can be practically ignored. We recommend an alternative
betting strategy that also allows us to ignore the lower limit on wagering. Suppose that you have an
initial bankroll By = $500 and that you are wagering at a Sportsbook with a lower limit of $10 and
an upper limit of $3000. Extensive personal simulations have shown that it is better to begin with the
Kelly system using a bankroll of z; = $400, and if the bankroll drops below zy = $200, add the final
$100 to the bankroll. The idea is to “kickstart” the system since a very small bankroll grows slowly
with fixed percentage wagering. It would be interesting to see if optimal values for z; and z» could be
obtained. Again, as long as the prescribed value of Kelly wagering exceeds $3000, you would maintain
$3000 betting.

The results that we have presented in this paper are readily applicable to sports betting. The real
difficulty is coming up with a winning system (i.e. a system where p is sufficiently large to overcome
the vigorish). Naturally p is unknown, and therefore one might estimate p for a proposed system using
past data. Of course, there is no guarantee that results will replicate from year to year, and one need
also be wary of multiple comparisons issues when considering various systems. Good luck!
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Abstract

The rolling of a ball on a horizontal deformable surface was investigated on the assumptions that
the ball was a rigid sphere and the surface was elastic. Finite strain theory was used to develop
theoretical results which were found to match observations well in cases where the ball and surface
involved were such as to ensure no slipping at the region of contact, including a lawn bowl rolling
on a grass rink. The theory did not match well the behaviour of a golf ball on a grass green because
the ball was too light to enforce the no-slipping condition.

1 Introduction

Experiments were performed with a billiard ball rolling on carpet, a lawn bowl rolling on a grass rink,
and a golf ball rolling on a grass putting green. In each case the ball was launched from an inclined
ramp, and accurate measurements were made of a number of distances travelled at measured times
throughout each run.

In every case the rolling surface was plane and horizontal. Under the very rapidly changing stresses
induced by a rolling ball, the behaviour of the surface approximates to that of an elastic solid. It is
reasonable to assume that the rigidity p of the surface is constant and that inertial forces induced in
it are negligible. Calculations showed that, in the situations considered, air resistance to the motion of
the ball was small enough to be neglected.

Finite strain theory of an elastic solid was found to be adequate to account for the observed nonlinear
nature of the deceleration of the ball as a function of time. The resulting theory was found to match
closely the results observed for both a billiard ball on carpet and a lawn bowl on grass. This was not so,
however, for a golf ball on grass; this was because the light golf ball did not enforce a no-slip condition
over the region of contact in the way that the heavier balls did.

The approach used here differs from that used by most investigators of this subject. The relevant
elasticity theory is shown to lead to a nonlinear differential equation governing the deceleration of the
ball. The problem is thus reduced to solving this equation and evaluating the constants which occur
in it and in its solution. (For other approaches to the subject, see Bueche and Flom [1], which also
contains a list of sixteen other references.)

2 The experimental arrangements

It was necessary to measure the distances = travelled by the ball, and the corresponding times ¢, at a
number of locations spaced along the path, including the end position. For the billiard ball on carpet

78
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this was achieved by recording the progress of the ball by a video camera which was mounted on rails to
enable it to move with the ball. A zoom lens enabled accurate distance readings to be made every 0.04
seconds from a metric tape laid beside the path of the ball. It was found that the distances recorded
every 0.08 seconds were adequate for analytic purposes.

For the golf ball and lawn bowl the outdoor situation made the use of a moving video camera difficult.
Instead, a multi-recording electronic stopwatch was used to record the times for the ball to reach several
measured locations, including the end point, the distances being given by a metric tape laid beside the
path.

Because only the distances travelled by the bowl along its path were needed in this investigation,
the bias causing a curved path was offset by two 20 cent coins taped to the side of the bowl. This was
found to be ideal for producing a straight path. (The effect of bias on the path of a bowl has been
described elsewhere, e.g. Brearley and Bolt [2], Brearley [3].)

All of the balls were launched down inclined ramps. For the billiard ball on carpet, a short aluminium
ramp was used, with a curve at the bottom to ensure smooth transition to the carpet. The lawn bowl
and golf ball were launched from a 2 metres long wooden ramp of 30° angle of inclination. A curved
steel plate at the foot of the ramp gave smooth access to the grass surface. A number of different
starting positions were marked along the ramp to enable different velocities to be attained by the ball
at the foot of the ramp.

The vertical heights of all three balls were measured at each starting position, and from these the
velocities of the balls at the bottom of the ramps could be determined. Calculations showed that air
resistance had a negligible effect on the motion, and that the lawn bowl was close enough to spherical
for it to be treated as a sphere when applying the principle of conservation of energy to its motion down
the ramp. For the billiard ball and lawn bowl, let

h = the vertical starting height of the ball on the ramp,
V' = the velocity of the ball on reaching the foot of the ramp.

Then (in obvious notation) the mechanical energy conservation principle gives

1 1/2 V\?
EmV2 + 3 <gmr2> <?> = mgh. (1)

2 with h expressed in metres, this gives

Using g = 9.8 ms™
V =3.74166Vhms ™', (2)

This formula was used to calculate the initial velocity of the bowl and billiard ball in each experiment.

Golf balls are not homogeneous as they have dense inner cores surrounded by less dense cores and
light urethane covers. In Section 7, equations (1) and (2) will be modified to deal with the golf ball
experiments described there.

For the experiments on grass, every run from each height h was performed several times, the results
compared, and the means of the observed times calculated, with the object of reducing experimental
errors. Between each run the ramp was moved sideways by several centimetres so as to prevent the ball
from running over a track which had been compressed by a previous run.

3 The solution of the deceleration equation

It is shown in Appendix A that the equation of motion of the ball in terms of the distance x travelled
in time ¢ is

= —a— bi+ ci’. (3)
The solution of (3) is needed under the initial conditions

t=0, =0, ==V,
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and is shown in Appendix B to be

r=Kt—c'ln(l+ Fe P +@G, 4)
where
cK? —bK —a =0, (5)
D =b-2Ke, (6)
¢V -K)
F_D—c(V—K)’ @
G=c'In(F+1). (8)

These equations show that the values of K and D are the same for all initial velocities V', but that
the values of F' and G vary with V.

A method of calculating the values of the constants in the equation of motion (3) and in the solu-
tion (4) from the results of experimental runs of the ball is described in detail in Appendix B. It requires
knowing the values of the initial velocity V' and the total time 7' and distance X for three different
runs. Experience shows that more accurate results are obtained by using results from a single run to
calculate the values of the constants, rather than from three entirely different runs. To obtain the three
data triples V', T', X necessary for evaluation of the constants, the following device is used.

The longest run is chosen because any errors in measuring its parameters will be proportionally
smaller than for shorter runs. Let Vi, T7, X; denoted its measured initial velocity and observed total
time and distance. A graph can be drawn carefully through all corresponding time and distance pairs
(t,x) observed during the run, including (0,0) and (73, X1).

An intermediate point on this graph is selected, at which the coordinates, (t2,z2) say, can be read
off. The slope of the graph at this point is determined carefully; its magnitude represents the initial
velocity V5 of an intermediate “run”, for which the total time and distance are

T2:T1—t2, X2:X1—1'2.

The process is then repeated for another selected intermediate point on the graph, having measured
coordinates (t3,z3). The measured slope there represents the initial velocity V3 of another intermediate
“run”, for which the total time and distance are

T3 =T — 3, X3 =Xy —a3.

In this way the magnitudes V', T', X for three runs are obtained, enabling the values of the constants
in the solution to be found. The process will be illustrated in the following sections.

4 Lawn bowl rolling on a grass rink

Experiments were performed with a lawn bowl of diameter 5in (= 0.127m) on a grass rink. The mass
of the bowl (including the two 20 cent coins taped to its side to counteract the bias and make it run
straight) was 1.573kg. This is large enough to ensure that no slipping could occur between the bowl
and the grass, so the theory expounded in the previous section should be applicable. The rink was dry,
with newly mown grass, and was classed as one of medium speed.

Runs were made from four different starting heights on the ramp. Equation (2) enabled the initial
velocity V' on the grass to be calculated in each case. Table 1 shows some of the data, including the
intermediate times t,, and distances x,,, total times T and total distances X recorded by stopwatch and
measuring tape. The times and total distances are the averages of those recorded over several trials. The
intermediate distances x, were indicated by pieces of wooden dowel laid on the grass at right angles to
the measuring tape. The run numbers are those marked on the ramp at the different starting heights h.
The times are in seconds and the distances in metres.
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Run no. 1 2 3 4
h (m) 0.867 0.681 0.491 0.281

V (ms™1) 3.484 3.088 2.622 2.018
tq 1.935 2.26 1.19 1.014
T1 6.00 6.00 3.00 2.00
to 3.075 3.27 2.256 1.76
To 9.00 8.00 5.00 3.00
t3 4.4175 4.436 3.548 2.637
T3 12.00 10.00 7.00 4.00
7 6.215 6.032 5.534 3.805
Ty 15.00 12.00 9.00 5.00
ts5 9.5625
T5 18.00
T 11.02 9.81 8.31 6.51
X 18.33 13.82 9.91 5.85

Table 1: Lawn bowl experimental results.

In all of the numerical work, the units are metric throughout, and will usually not be stated. The
number of figures carried in many parameters is for purposes of calculation only, and is not indicative
of the accuracy with which their values are known.

Three sets of data were obtained from Run 1 by the method described in Section 3, using (t2,x2)
and (t4,z4) as the intermediate points. The results obtained were

K =1.08372, ¢=0.03748, D =0.23351.

The values of F' and G for each run were then calculated from equations (7) and (8). The results
are as shown in Table 2.

Run no. 1 2 3 4
F 2.74752 2.02655 1.46788 0.99372
G 35.247 29.547 24.102 18.410

Table 2: Values of F' and G for the lawn bowl.

The value of b was then found from equation (6), and that of a from equation (5); they are
a=0209ms %, b=0.152s"1.

The numerical forms of the solution (4) are now known for all of the four runs investigated. They
enable the graphs of x versus ¢t shown in Figure 1 to be plotted. This figure also shows the observed
points (t,z) found during the experiments. The agreement between calculated and observed results is
excellent, lending support to the theory on which the calculations were based.

5 The velocity and acceleration of the lawn bowl

So far it has been tacitly assumed that the acceleration formula (3) applies throughout the whole run of
the bowl. The acceleration actually undergoes very sharp changes at the start and finish of a run, their
durations being so brief that their influences on the path of the bowl are imperceptible. These changes
will now be considered, together with the velocity of the bowl, using Run 1 as an illustrative example.
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Figure 1: Distance x versus time ¢ for lawn bowl on a grass rink.

The velocity at any instant is easily found by differentiating the solution (4). This gives the velocity
as

i=K+c D1+ F el L (9)

After insertion of the values of the constants found in Section 4, this equation enables the graph of &
versus ¢ for Run 1 to be drawn in the relevant interval 0 < ¢ < 11.02. It is shown in Figure 2.

During its travel down the launching ramp the acceleration of the bowl is constant. The curved
metal piece at the foot of the ramp is horizontal at its lower end, which rests on the grass, so the
acceleration of the bowl reduces to zero at this point.

On leaving the metal piece the bowl sinks into the grass to a very small depth. It is not hard to
show that, if this small depth is estimated to be 1 mm, the duration of the transition of the bowl from
metal piece to grass is about 3 milliseconds in the case of Run 1, for which the initial bowl velocity V'
is 3.484ms~'. During this time the acceleration of the bowl decreases sharply from zero to a negative
value.

On the grass the deceleration is given by the derivative of equation (9), namely

. eDt D 2
t=—F (71 n FleDt> : (10)

and this governs the motion of the bowl for most of its run. Very near the end of the run, the horizontal
displacements of the surface, which have been induced by the motion of the bowl, are decreasing to
zero. The force F» described in Appendix A is therefore decreasing to zero, and the same is true of the
force F; which vanishes when the forward movement of the bowl ceases. The acceleration # is therefore
tending to zero rapidly, rather than undergoing a finite discontinuity where & = 0 as suggested by
equation (3). Calculations suggest that the duration of this end phase is of the order of 30 milliseconds.

When the values of the constants appropriate for Run 1 of the bowl are inserted in (10) this equation
enables the graph of & versus ¢ shown in Figure 3 to be drawn. The slopes of the graph at the start and
end have been reduced to make the terminal features visible.
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Figure 2: Velocity & of lawn bowl versus ¢, Run 1.

6 Billiard ball rolling on carpet

The experimental arrangements described in Section 2 were used for the billiard ball rolling on loop
pile carpet. A run was made over only one distance of 241 cm. Because of the shortness of this run, the
observations and calculations were all made in centimetre units rather than metric.

Analysis of the results showed that the billiard ball on carpet behaved in the same way as the lawn
bowl on grass, in the sense that its deceleration is given by equation (3), so that the solution (4) is
relevant. With an initial velocity of V' = 120.0cms~!, the form of the solution was found to be

z = —135.49t — 701.70 In(1 + 4.1799¢~0-44717%) 4 1154.2.
The associated values of the constants in the deceleration equation were found to be
a=344cms 2, b=0.0610s"1, ¢=0.00143cm !,

or, in metric units,

a=0.344ms 2, b=0.0610s"!, c=0.143m !,

Figure 4 shows the calculated form of the path of the billiard ball predicted by the above solution,
and also some of the observed values (¢, z). The agreement between calculated and observed results is
exceedingly close, lending support to the theory on which the solution was based.

7 Golf ball rolling on grass

It is well know that golf balls are not homogeneous but consist of a dense inner core, a less dense outer
core, and a thin plastic cover. They cannot be treated as homogeneous spheres. The moment of inertia I
can be calculated from the conservation equation

1 1 2
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Figure 3: Acceleration of lawn bowl versus ¢, Run 1.

By measuring the time for the golf ball to roll down an inclined plane, and assuming the acceleration
to be constant, the value of V' can be found. Since m = 0.0450kg and r = 0.02135m, (11) enables I
to be calculated for the golf ball. The result obtained was 71.7 gm cm?, which is 12.6% less than if the
ball were homogeneous. Equation (11) then gives

V =3.8110Vhms ™ (12)

for the velocity of the ball at the bottom of any ramp, the starting height h being expressed in metres.

Equation (12) enables Table 3 to be constructed, giving the initial velocity of the golf ball on the
grass for each of the four starting positions investigated. This table also lists the total time 7" and
distance X observed for each run, these values being averages over several trials on each run. The
putting green was one of slow speed.

Run no. 1 2 3 4

h(m)  0.883 0.698 0508 0.297
V (ms~!) 3581 3.184 2716 2.077
T (s) 4663 372 323 3.07
X (m) 6777 559 425 289

Table 3: Golf ball experimental results.

The results in Table 3 were analysed in the same way as was done for the lawn bowl in Section 4.
The values of the constants in the deceleration equation were found to be

a=0.195ms™2, b=0.779s5"", c=0.152m™!,
For Run 1, the form of the solution (4) is
z = —0.23926t — 6.5604 In(1 + 2.1581e #5215 4 7,544,
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Figure 4: Billiard ball on loop pile carpet.

The solutions for the other three runs differ from this in the values of the constants F' and G.

The calculated forms of the solutions for all four runs are shown in Figure 5, together with the
observed values of the (¢, x) pairs.

The agreement between the calculated and observed results shown in Figure 5 is poor, the calculated
value of X being 9% less than the observed value in Run 1, and this deficit increases to 16% in Run 4.
The reason for this is that the golf ball is too light to ensure the no-slip condition between it and the
surface, on which the theory is based. The light ball skips along on the blades of grass in a way that
the massive bowl did not.

It is, of course, possible to obtain a good match between calculated and observed results by modifying
the values of the constants a, b and ¢ from those which were calculated from the data, but there is no
point in such an artificial move. The lack of agreement shown in Figure 5 lends support to the theory
on which the calculated results are based, for it shows that the no-slip condition is an essential part of
it.

The experiments with a golf ball were repeated on the medium speed bowling rink which was used
earlier for the lawn bowl (see Section 4). The results were similar to those displayed in Figure 5, though
the distances travelled by the ball were greater by about 30% than those on the putting green.

8 Summary and conclusions

The rolling of a ball on a plane horizontal surface was investigated by treating the ball as rigid and the
surface as deformable. Experiments were performed by launching from ramps a lawn bowl on a grass
bowling rink, a golf ball on a grass putting green, and a billiard ball on a loop pile carpet.

It was adequate to treat the bowl and billiard ball as homogeneous spheres, but investigations showed
that the density of the golf ball varied internally to a degree that required its moment of inertia being
evaluated accurately.
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Figure 5: Golf ball on grass putting green.

For the lawn bowl and billiard ball the agreement between calculated and observed results was
excellent, indicating the appropriateness of the theory. Because the golf ball is too light to ensure the
no-slip condition on grass, accurate predictions could not be made about its travel distances on this
surface.

Appendix A The mechanics of ball retardation

Al Introduction

The ball is assumed to be rigid, its retardation being caused by its deformation of the elastic rolling
surface. It is assumed that there is no slipping between the ball and the rolling surface.

The retarding force provided by the surface consists of two parts. One is the result of the ball being
in a shallow depression caused by its weight; it is virtually constant, and will be denoted by Fi. The
other part, denoted by F>, is induced by the elastic strain caused in the surface by the motion of the
ball. Since air resistance is neglected, the equation of motion of the ball in the forward direction is

mi):—Fl —FQ, (13)

where m is the mass of the ball and v is the velocity of its centre of mass G.
The form of F» will be determined on the assumption that the rolling surface obeys the laws of
elastic finite strain theory.

A2 The response of the deformable surface

Because there is no slipping between the ball and the surface at any point of the region S of contact
between them, and the displacements of the surface caused by the ball are very small, the path of every
point P on the ball is very nearly cycloidal, as shown in Figure 6 (a).

The position of the ball will be referred to rectangular axes Ozy, with Oz in the direction of motion
and lying in the surface on which the ball is rolling, as in Figure 6.
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Figure 6: Cycloidal paths and velocity components of points of the rolling ball.

The cycloidal path of P has horizontal and vertical components of velocity as shown in Figure 6 (b).
When P is in contact with the surface on which the ball is rolling, it induces in it a shear strain which
is very nearly horizontal because the depression is small, and a compression strain which is very nearly
vertical. In the following section the horizontal strain will be calculated. From this the associated stress
can be found, and when summed over all points of S it will be the reverse of the force F5 acting on the
ball.

At the end of the travel of the ball, the forces F} and F» drop to zero, as they are caused purely
by the motion of the ball. This will not occur as finite discontinuities of the forces, but as very sharp
declines accompanying relaxation of the strains of the deformed surface.

A3 The stress—strain relations for the surface

Every vertical “slice” of the ball parallel to the plane Ozy in Figure 6, which has a circumference making
contact with the region S, is moving only in a direction parallel to Oxy. Each such slice can therefore
reasonably be expected to cause stresses and strains which have no components perpendicular to Ozy.
The elasticity problem involved is thus one known as “plane strain”, with no dependence on a third
space dimension perpendicular to Ozy.
It is convenient to rename the axes Ozy as Oxix2. The general form of the stress—strain relations
is (Sokolnikoff [4])
Pij = )\05” + 2/1,61']', (14)

where A, p are Lamé parameters and 6 is the dilatation. There are grounds for believing that finite
strain theory is appropriate, for which the form of the strain tensor is

1 <GUj + 6u1> lauk 6uk (15)

Cij = 5 8:61 amj B 2 8:61 8—37]"

where the u; are displacements, and summation over k is intended in the last term.
The shear stress of interest in equation (14) is

D21 = 2pesq,

since this is responsible for the shear force

FQ = // P21 dS = 2,U, // €21 dS, (16)
S S

where the integration is over the whole region S of contact.
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A4 Consideration of the surface displacements

It is necessary to consider separately the cases when the points under strain are ahead of and behind
the lowest point of the ball. as shown in Figure 7.

v 8t

i/

a ’

P P
Behind @ h‘“w e Q  Ahead

o

Figure 7: Movements of points P, Q to P', Q' during strain.

Figure 7 depicts the movement of the bottom of the ball during a small time interval ¢, in the course
of which the centre moves a distance vdt. The displacements PP’ and Q@' experienced by points P
and @ during ¢ are shown for the cases in which the points are ahead of and behind the lowest point
of the ball.

Before considering these displacements in detail it can be shown that they are proportional to the
ball velocity v. Writing vdt = d for brevity, the situation involved may be represented by Figure 8.

YA
7/4 S
d = \
i1
"
S
\\__J__,_/_r_/

Figure 8: Two successive ball positions a distance d apart.

Let the equations with respect to the axes Ozy of the circular cross-sections of the ball shown in
Figure 8 be
1‘2+y227‘2, (a:—d)2+y2:

The two circles intersect the vertical line with equation z = k at values of y given by
y=0" =" y=07 = (k-7

respectively. Although not shown in Figure 8, it is intended that d < k& < r. It is easily seen that
the difference between the values of y given by the last two equations is approximately kd/r = kvdt/r.
When interpreted in the context of Figure 7 this means that the small displacements PP’ and QQ' are
proportional to v.
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To consider these displacements it is desirable to enlarge the relevant parts of Figure 7, as shown in
Figure 9.

2 A

Behind

0

Figure 9: Displacements at points P, () ahead of and behind the lowest point of the ball.

The displacements of P and () are shown in vector notation in Figure 9. The components of ju with
respect to the axes Oz o are denoted as du = (duq, duz).

If the coordinates of P are (z1,z5), and those of @ are (z; + dz1, 29 + dz2), then PQ = (0x1,0x2).
From Figure 9, it can be seen that |dz;| > |dz2| for points within the small region S of contact. It is
also clear that:

behind the ball:  duy > 0, dus >0, 0z, <0, dzy < 0;
ahead of the ball: du; > 0, dus <0, dx; >0, dxs > 0.

A5 The surface strain and stress

From equation (15), we have

(17)

ey = L (O Ouz) 1 (0w Ou  Ou; Ouy
2= 2 8562 8371 2 8372 8561 8372 8371 )
From the work in Appendix A4 it follows that the magnitudes of all the partial derivatives in (17)
are proportional to v. Also, in the first term on the right hand side of (17), the derivative duy/0zs is
the dominant one, and this term is positive both ahead of and behind the ball. Hence

1 6u1 8U2
(=2 + =2 = fiv, 18
2 (8:52 + 8371) fl'U ( )
where f; is a function of position in the contact area S which is positive throughout S.
From Appendix A4 it also follows that the magnitude of the second term on the right-hand side

of (17) is proportional to v?, and that its sign changes on moving from behind the ball to ahead of it.
So
1 8u1 8u1 8U2 8U2
2 61‘2 81’1 61‘2 61’1
where f5 is a positive function of position in S, and the sign is + behind the ball and — ahead of it.
The form of (19) suggests that its contributions to the strain es; would annul one another when
summed over the whole of S. The deformations in the rolling surface are, however, not symmetrical
about the lowest point of the ball. The ball compresses the region ahead of it, increasing the magnitudes
of all four positive derivatives in the last term in equation (17); and behind the ball the strain is reduced
by the ball’s progress, thus reducing in this region the magnitudes of both negative products in the last

) =+ fou?, (19)
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term in (17). The net result is a negative value when the last term (including its coefficient —1) is
integrated over the whole of the region S.
On using (17), (18) and (19), equation (16) yields

F2 = 2/J, //S(fl’l) + f2U2) dS = Al’U - A2U2, (20)

where A; and As are positive constants. Their values will, of course, depend on the size and weight of
the ball and on the character of the rolling surface. Substitution from (20) in (13) yields

mu = —F1 — (A1U — A2’U2),

whence
O = —a—bv+cv?, (21)

where a, b, ¢ are positive constants.

Appendix B

Bl The solution of the equation of motion

The equation of motion is
# = —a — bi + ci’.

On substituting y = x — K't, where
cK? —bK —a =0, (22)

and then putting w = g, it is found that

W = cw? — Dw,

where
D =b-2Ke. (23)
Solving by separation of variables yields
Dc!
wW = ————-——
1+ F-1ebt’

where F'is constant.
Since w(0) =V — K, where V' = &(0), we find that

e c(V-K)

- D-¢c¢(V-K)

Integrating again to find z leads to
t=Kt+c'Dt—c'In(e” + F) + G =Kt —c 'In(1 + Fe™ %) + G,

where G is a constant. Since x(0) = 0, we have

G=c'In(F+1). (25)
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B2 Evaluation of the constants

Differentiating the above solution for x gives

¢~ 'FDe Dt

r=K _
. + 1— Fe Dt

This result, and the above form for F, enable In(1 + Fe~P?) to be eliminated from =, giving
(Ke+ D)t =cx —In(z — K) + In(V — K).
At the end of a run, we have t =T, x = X, £ = 0, and so
(Ke+D)T =cX +In(1 - VK ™).

Using data (71,V1), (Ta, V), (T3, V3) from three runs gives three equations for the three unknowns K,
¢, D. By eliminating K¢+ D between two pairs of these equations, and then ¢ between the two resulting
equations, an equation for K is obtained. This can be solved numerically by Newton’s method.

The constants ¢ and D can then be found, after which equation (23) yields the value of b, and then
(22) gives a. These constants depend only on the properties of the ball and the surface.

For a given run, the constants F' and G can be found from equations (24) and (25), their values
depending on the initial velocity V. The function z(t) then gives values which can be compared with
experimental results.
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Abstract

In 1998 the West Australian Football Commission (WAFC) asked us to help them set the fixtures
for the premier Australian Rules football competition in Western Australia, The West Australian
Football League (WAFL). In this competition there are nine teams, and our task was to try to come
up with a set of fixtures in which each team had (as much as possible) a sequence of alternating
home and away games, while trying to satisfy an enormous number of constraints. The problem was
separated into two parts, the listing problem (or who plays whom and when?), and the scheduling
problem (where they play, that is, at whose home-ground?). The listing problem was tackled by
using a standard “big wheel” generator, while the scheduling problem was dealt with by using a
genetic algorithm. Our work serves as a useful example of how to apply genetic algorithms to solve
practical optimisation problems.

1 Introduction

When the WAFL went from eight teams to nine teams in 1997, they encountered a major problem with
setting their fixtures. When there were only eight teams, every team could play every other team three
times over 21 rounds. One of the main problems with having nine teams in the competition is that one
team must stand out each week. For 1999, we were asked to come up with a set of fixtures over 23
rounds, with one bye in each of 21 rounds, and three byes in the two remaining rounds. This means
that there are (21 x 4) 4+ (2 x 3) = 90 matches, so each team plays 20 games in all and has three byes.
These matches had to be arranged so that each team had ten home (H) games, ten away (A) games,
and three byes, with teams playing as near as possible to an alternating sequence of home and away
games. Note that since each team plays a total of 20 matches, they must play four of the other teams
twice and the other four teams three times during the season, 20 = (4 x 2) + (4 x 3).

The nine clubs in the WAFL are: Claremont (CL), East Fremantle (EF), East Perth (EP), Peel
Thunder (PT), Perth (PE), South Fremantle (SF), Subiaco (SU), Swan Districts (SD), and West Perth
(WP).

In 1999, the fixtures were actually set by the Football Operations Manager at the WAFL, using
a commercial fixturing program available on the market, combined with some switches by hand. Our
solution was not used, because there was insufficient time to implement our algorithm. There were some
major problems with the fixtures used in 1999. The two rounds with three byes were too close to each
other, and some teams did not enjoy an alternating sequence of home and away games. For example,
one team had four consecutive away games and another team had only one home game in the space of
seven weeks. One pair of teams also played each other twice in three weeks (rounds 14 and 16). Our
expertise in this field won us a contract to set the fixtures for seasons 2000, 2001 and 2002. However, we

92
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did not have to use genetic algorithms to arrive at a reasonable solution. One of the main reasons for
this was that the WAFL, on our advice, decided to relax some of its constraints. As the Olympic Games
were held in Australia in 2000, that year’s season was shortened to 21 rounds, with each team playing
18 games (nine home and nine away) with three byes. The WAFC decided to stick with 21 rounds in
2001 and 2002. Although our methods developed for 1999 were never used, it is instructive to review
our proposed method of solution.

2 The wish list for 1999

In 1998, each of the clubs presented the WAFC with a wish list for the 1999 season. Below we have
listed some of these wishes. Some (not all) of them were incorporated into our model. Some of the
wishes were designated to be hard constraints (that had to be satisfied) while others were nominated
to be soft constraints that were incorporated into the fitness function of our genetic algorithm. As will
become clear below, the complexity of the fixturing problem increases dramatically with the number of
constraints.

Hard constraints

General/WAFC
1. Each team is to have ten home games, ten away games, and three byes played over the 23 rounds.

2. If two teams play each other exactly twice in the season, each must have one home game, that is,
each team must have either an HA or AH arrangement for these matches.

3. If two teams play each other three times in the season, they must have at least one home game
each. This means they can have one of the following arrangements: HAH, HHA, AHH, AHA,
AAH, or AHH.

4. SF must play EF three times, as this “local derby” is always well attended.

5. SF must play EF at SF’s home ground (SF v EF) on the Foundation Day holiday in round 10.

6. WP must play EP three times, another “local derby”.

7. EP v WP on Foundation Day in round 10.

East Perth (see also points 6 and 7)

8. For 1999, EP required its first 4 games to be away from its home-ground, which was being used
by Perth Glory, Perth’s interstate soccer team. At a later date this requirement was extended to
the first six weeks.

Peel Thunder

9. PT requested home games on all public holidays (in rounds 1, 4 and 10), given that Peel is based
in Mandurah, which is a holiday destination south of Perth. This would assist to maximise crowds.

South Fremantle

10. SF requested byes in rounds 9, 12 and 19. As this was SF’s centenary season this was considered
to be a hard constraint.
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Soft constraints

General/WAFC
11. To avoid, where possible, the scheduling of two consecutive home or away games.
12. To achieve an even spread of byes for each team.

13. Scheduling of a general bye for the interstate matches (formally in round 12). The only effect of
this constraint is that one must try to avoid having a sequence like BGB, BGA, AGB, or AGA
(where B = bye, G = general bye, A = Away), so that no team has a prolonged absence from
their home-ground.

14. With respect to point 3 above, AHA and HAH are the preferred arrangements.

15. Attempt to rotate clubs that play each other three times, with the exception of the local derbies,
points 4 and 6 above.

Claremont
16. Bye in middle of August (round 19 or 20).
17. CL v SF in round one.

FEast Fremantle (see also points 4 and 5 above)

18. EF requested that home games should not occur in consecutive weeks so that it could more
effectively promote its home games.

Perth
19. PE to play WP three times in 1999 with two of the matches played at Perth’s home ground.
20. Bye in late April or early May (rounds 4, 5 or 6).
21. PE v EP to be scheduled approximately four weeks after the Perth’s first bye.
South Fremantle (see also points 4, 5 and 10 above.)
22. SF to play SD 3 times during 1999.
Subiaco

23. Avoid scheduling a home-game for Subiaco at Subiaco Oval on Saturday during the weeks when
one of the interstate Australian Football League (AFL) teams West Coast or Fremantle is playing
at Subiaco Oval on a Friday night. This was not really a problem as the match could always
be moved to a Sunday in this event. One also needs to ensure that Subiaco Oval is avoided on
Saturdays or Sundays when it is required by the interstate teams.

24. SU requested a bye in round 1.
Swan Districts

25. SD v WP in round 1. This conflicts with request 26 below.
West Perth

26. WP v EP in round 1.
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9 2
8 3B
7 4
6 5
Round 1 Round 2 Round 3 Round 4
3v5 9v?2 1v3 2v4
6v2 3vs8 4v9 5vi1
1v7 7v4 8v5 9v6
8v9 5v6 6v7 7v8
4 bye 1bye 2 bye 3 bye

Figure 1: The “big wheel” algorithm.

3 Solving the listing problem

We approached the fixturing problem by separating it into two parts, the listing part of the problem,
that is, who plays whom and when, and the scheduling part of the problem, that is, where the game
is played. In this section we show how the listing part of the problem can be solved by using the so-
called “big wheel” algorithm. The big wheel can sometimes be used to solve the scheduling part of
the problem as well, but this is generally not practical when there are a number of extra constraints.
Imperfect scheduling solutions generated in this way can be used as starting configurations for our
genetic algorithm to solve the scheduling problem. In other work, we tried to solve both the listing and
the scheduling problem by using genetic algorithms “in one hit”, but this proved to be much too difficult.
With so many constraints it was not possible to perform small manipulations of our chromosomes, which
is an essential ingredient in a good genetic algorithm.

The diagrams in Figure 1 illustrate how the listed pairs are generated by the big wheel algorithm.
Each number on the circle represents one of the nine possible teams involved in the tournament. The
numbers will be later associated with particular teams when we try to incorporate the constraints. The
parallel bars show how teams are paired in each round. The team that is not adjacent to the end of a bar
(in the diagram on the left, this is team number 9) has a bye. To generate the next round, one rotates
the parallel bars through one ninth of a revolution, as shown in the second diagram. If this process is
repeated for nine rounds then each team plays each other team exactly once, and has one bye. One
can also assign a home (H) and away (A) to the ends of the bars, as shown in Figure 1, to generate
a scheduling solution. Notice that each team has an alternating sequence of H and A for each group
of nine rounds. One generates 27 = 3 x 9 rounds in this way, with the order of H and A reversed for
rounds 10-18 with respect to rounds 1-9. This is obtained from the big wheel algorithm by swapping
the H and A labels on the bars. Rounds 19-27 are identical to rounds 1-9.

To get 23 rounds of fixtures using this scheme one deletes the last four rounds. See Table 1. At
this stage, four teams (5, 6, 7 and 8) do not have their allotted three byes. One must then find places
in the remaining list where these teams play each other in pairs. See highlighted cells in Table 1. The
appropriate set of byes is then achieved by eliminating two appropriate pairs of matches involving these
teams. One way that this can be achieved is to eliminate the round 3 match between teams 8 and 5
and the round 21 match between teams 6 and 7, as shown in Table 1. This leaves 21 rounds with four
matches each and two rounds with three matches (and three byes). One needs to ensure that each team
has ten home and ten away games. If we had instead eliminated the 5 v 8 match in round 12, we would
have found that team 5 now had nine home games and 11 away games, and we would need to correct the
balance by making an appropriate adjustment somewhere else. Note that we could have also eliminated
both matches in the same round (3, 12 or 21). This would generate a listing where there are 22 rounds
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with four matches and one round with two matches and five byes.

rl r2 r3 r4 rd r6 r7 r8 r9

8v1l| 9v2 1v3 2v4 [ 3vh|4v6 | 5vT 6v8 | 7Tv9
2v7| 3v8 4v9 5v1 |[6v2|7v3]| 8vd4 9v5H 1v6
6v3| 7vd | 85| 9v6 |1vT7|2v8 ]| 3v9 4v1 | 5v2
4v5| 5vb 6v7 7ve8 [ 8v9|9vl1 1v2 2v3 | 3v4
9b 1b 2b 3b 4b 5b 6b b 8b
rl0 rll rl2 rl3 rl4 rl5 rl6 rl7 rl8

1v8| 2v9 3vil 4v2 |5v3|6v4 | TvH 8vb6 | 9v 7
Tv2]| 8v3 9v4 1vd |[2v6 | 3vT7 | 4v8 5v9 | 6v1
3ve | 4v7T 5v 8 6v9 | 7vl1|8v2| 9v3 1v4d | 2v5
5v4d| 6vd 7v 6 8v7 |9v&8 | 1v9 | 2v1 3v2 [4v3
9b 1b 2b 3b 4b 5b 6b b 8b

r19 r20 r21 r22 r23 +24 25 +26 27
8v1i| 9v2 1v3 2v4 | 3vh |4%6 | vF | %8 | O
2v7| 3v8 4v9 5v1 |6v2 |F%3 | 8%4 | 95 |16
6v3| 7v4 | 8v5 9vo6 | 1v7 | 2%8& | 3v9 | 41 |52
4v5| 5vb | 6% F | Tv8 [8v9 |0+t | 52 | 23 | 3v4
9b 1b 2b 3b 4b S5h- Ghb- b 8b-

Table 1: A possible listing of matches devised by the big wheel algorithm.

There are a number of ways in which one can manipulate the listing in Table 1, while preserving the
hard listing constraints. These have been outlined elsewhere [1]. For example, one can swap two rounds
so long as this does not generate a solution in which a team has byes too close together or the same two
teams play each other too close together. One can also swap the labels of teams in certain sections of
the listing, or move the byes around.

The big wheel algorithm leads to a reasonably satisfactory solution to the listing problem, as well
as the scheduling problem as most teams have an alternating home-away sequence like HAHAHA or
AHAHAH, except for a possible hitch with the switch from round 9 to 10 and from round 18 to 19, where
some of the teams have consecutive home or away games. Much of this natural flow in the scheduling
is however disrupted when we try to impose the constraints.

From this listing one can see that the following pairs of teams play each other twice:

(1,2),(1,4),(1,6),(1,9),(2,3),(2,5),(2,8),(3,4), (3, 7),
(3,9), (4,6),(4,8),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),

and the following pairs of teams play each other three times:

In developing the fixtures one needs to determine which pairs of teams should play together three
times during the season. Ideally one should rotate them from year to year but financial considerations
require that the popular local derbies (SF v EF, and WP v EP) should occur three times during the
season.
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4 Assigning teams to numbers

In the first instance one should try to assign the labels to teams in such a way as to satisfy most of the
constraints listed in Section 2. For example, referring to the fixtures in Table 1, one could assign SF = 1
because SF wants a bye in round two. As SF wants to play EF in round 10 we could set EF = 8. As
Perth wants a bye in rounds 4, 5 or 6, this implies that PE = 3, 4 or 5. Suppose we take PE = 3. As
PE is to play EP four rounds later, we could take EP = 2. Requiring that WP v EP in the 10th round,
implies WP = 7. Note also in our choice of label assignments above we were conscious of the fact that
EF and SF (and EP and WP) need to play each other three times.

Continuing in this way, we were able to satisfy most of the constraints [1]. A possible listing is given
in Table 2. Our solution is, however, not without its own problems because in the course of satisfying
the various constraints we have upset the natural flow of alternating home and away games generated by
the big wheel algorithm. Generally it only takes a few such manipulations of the listings to dramatically
alter this alternating sequence. In practice it may not be possible to satisfy all of the constraints and
one needs to prioritise them. In the end however, we hope that our genetic algorithm can restore the
fixtures to an almost alternating sequence of H and A for each team.

5 Encoding the scheduling part of the problem
on a chromosome

The scheduling part of the fixtures is solved by using a genetic algorithm [2, 3, 4]. Here we take a
given listing, such as that given in Table 1 or Table 2 and we encode the information pertaining to the
scheduling onto a “chromosome”. Special consideration must be given to the pairs of teams that play
each other twice and the pairs of teams that play each other three times. See Section 3. Recall that for
this particular set of fixtures there are 18 pairs of teams that play each other twice and 18 pairs of teams
that play each other three times. We will call these “A pairs” and “B pairs”, respectively. All A pairs
must play each other in a HA or AH arrangement. We can label these two possibilities by using a binary
digit z = {0,1}. We can let 0 denote the case where the team with the lowest label plays the first home
game, and 1 denote the other possibility. For the pair (1,2) in Table 1 the home/away sequence will
then be encoded as a 0, as 1 plays the first home game. One can encode the corresponding sequences for
the rest of the A pairs in this way. These binary digits will form the first 18 genes of our chromosome.
For the set of fixtures given in Table 1 these genes would be assigned the values 010101001001001000.
These genes tell us precisely which team from each pair plays the first game at home. The genes are
ordered in the same way as the previously given list of A pairs. For example, the tenth gene in this
sequence refers to the pair (3,9) and the value 0 tells us that the games are played in the order 3 v 9
followed by 9 v 3.

For the B pairs, there are six allowed possibilities (HAA, AHA, AAH, HHA, AHH, HAH). We will
encode these six possibilities onto our chromosome by using a binary and a ternary digit. The binary
digit (z = £1) tells us which of the teams in the pair has the most H games. We will use the convention
that the lower z value —1 corresponds to the lowest numbered team having only one home game and
z = 1 corresponds to the lowest numbered team having two home games. For the pair (1,3) the matches
are played in the order 1 v 3, 3 v 1, and 1 v 3 which we would label as HAH, which would attract the
value z = 1. For each of these z values there are three possibilities, shown in Table 3. We will encode
these possibilities by using a ternary digit y = 1, 2, 3. Note that for a fixed y value, going from one z
value to another corresponds to changing exactly one of the allowed H’s into an A, or vice versa.

The B pairs in Table 1 would be given the z/y pairs: 1/3, —=1/2, 1/3, —=1/2,1/3, —1/2,1/3, —1/2,
1/3, -1/2,1/3,1/3, —=1/2,1/3, 1/3, —1/2, 1/3, 1/3. The fourth pair of values, for example, which is
associated with the (1,8) pair corresponds to the arrangement AHA, or 8 v 1,1 v 8 8 v 1.

A typical chromosome will then consist of the 18 binary genes representing the pairs of teams playing
twice and the 18 binary and 18 ternary gene pairs representing the teams that play each other three
times. There are however certain restrictions which apply to how we can manipulate these chromosomes.
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z=-1 z=1
y=1| HAA HHA

y=2| AHA AHH
y=3| AAH HAH

Table 3: The assignment of y and z genes for B pairs.

With the B pairs, one can freely change the value of the ternary genes. The same applies to the binary
gene for A pairs, however we cannot freely change the value of the z gene without interfering with the
constraint that each team plays ten H and ten A games. If, for example, we were to change from the
configuration y = 2, z = —1 (or AHA) to y = 2, z = 1 (AHH), then we have changed the number
of home games that are played by each of these pairs. Clearly one needs to make another adjustment
to the other B genes to compensate for this, but these additional changes may induce further required
changes. To solve this problem one needs to identify cycles which maintain the allocation of ten H games
to each team. This is discussed in the next section.

6 The matrix gene for B pairs

Each team plays a total of ten home games: four of these will be part of an A pair, two will be a part
of a B pair in which the team has one home game (z = —1) and two will be a part of a B pair where it
has two home games (z = +1). We can describe the B pair situation with a 9 x 9 matrix, whose rows
and columns are labelled by the team numbers. The matrix will have a 0 entry for each row/column
pair that corresponds to an A pair, and along the diagonal. The matrix will have +1 in each position,
where the row team plays a column B pair team home twice and a —1 where the column team plays
the row B pair team twice at home.
For our starting configuration of Table 1 this matrix would correspond to

0 0 1 0 -1 0 1 -1 0
o 0 O 1 0 -1 1 0 -1
-1 0 0 0 1 -1 0 1 0
0O -1 0 O 1 0o -1 0 1
M=]1 0 -1 -1 0 10 0 0
0 1 1 o -1.0 0 0 -1
-1 -1 0 10 0 O 1 0
1 o -1 0 O 0 -1 0 1
0 1 0 -1 0 1 0 -1 0

Consider for example row 2. The B pairs involving team 2 include (2,4), (2,6), (2,7) and (2,9).
With the pairs (2,4) and (2,7) team 2 has two H games, whereas with the pairs (2,6) and (2,9) it has
one H game.

The matrix M is antisymmetric, that is,

M;j = —Mj;,
and for any row or column there are two +1’s and two —1’s, with the other entries zero.

We can now describe a legal change in the z values, that is, one that ensures that each team has ten
home games and ten away games. Choose a row, say i = 3, choose a +1 on that row, say entry Msg, and
change it to —1. Then change Mgs to +1. The row ¢ = 3 then has three —1’s and row j = 8 has three
+1’s. Choose a +1 in row j = 8, say Mgy, and change it to —1, and then change Myg to +1. Now take
a +1 in row 9 and change it to a —1. Say we change Mgg to —1; this forces Mgg to change to +1. Then
change a +1 in row 6, say Mgs, to a —1, which forces a change of M3g to +1. As we have come back
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to row 3, we now have an alternate matrix M that has two +1’s in each row and two —1’s in each row,
so we can stop. This is another legal matrix that has all teams playing ten home and ten away games.
This is deemed a legal manipulation of the z values corresponding to the B pairs. Technically we could
get rid of listing the z values on the chromosome and instead give the x values, the y values and the
associated matrix. The entries in the matrix containing the z values also tell us how we are allowed to
manipulate them.

Another way to look at the allowed manipulations of the z values arising from the matrix M is to
look at it as a directed graph, which essentially summarises the allowed cycles [1].

7 Hard constraints in the scheduling part of the problem

There are also some hard constraints that we may need to satisfy in the scheduling part of the problem.
For example EP = 2 want to have its first four games in rounds r; to r4 away from home. In these
weeks EP plays SF = 1, CL = 9, SU = 6 and PE = 4. The (1, 2) pair is an A pair while the other pairs
(2,9), (2,6), and (2,4) are B pairs. The arrangement of matches for these pairs are controlled by the
x1, 28/Ys, 26/ys and z5/ys genes respectively. To ensure that EP = 2 has an away game for the first
match for each of these pairs restricts the allowed values of these genes to be equal to z; =0 (25 = —1,
ys=2or3)or (zs =+1,ys =2) (26 = —1,y6 =2o0r3) or (z6 = +1,ys =2) (25 = —1,y5s =2 o0r 3) or
(25 = +1, y5 = 2).

These genes could be frozen at these values to ensure that EP has its first four games away from
its home ground. Also, PT = 4 has requested that it should have home games in rounds r1, r4 and rig.
In these rounds, PT = 4 plays EF = 8, EP = 2 and SD = 5. This restricts the value of the genes as
follows: z15 = 0 (corresponding to the A pair (4,8)) (25 = —1, y5s =2 or 3) or (25 = +1, y5 = 2) (same
as for the EP request above) (z12 = —1, y12 = 2) or (212 = 1, y12 = 1 or 2).

The other hard constraints imposed on the scheduling part of the problem include:

e SF(1) v EF(8) in r1o implies (z4 = —1,ys =2) or (z4 =1, y4 = 1 or 2),
e WP(7) v EP(2) in r10 implies (27 = —1,y7 = 1 or 3) or (27 = 1, yr = 3),
e SD(5) v WP(7) in ry implies x14 = 0,

e P(3) v EP(2) in rg implies z5 = 1.

In the genetic algorithm below we would ensure that these genes are not altered in our chromosomes,
and that all individuals in our starting configuration had the required values for these genes.

8 The genetic algorithm

From the previous sections we have managed to encode the scheduling part of the problem onto a
chromosome which has 18 binary z-genes (for the A pairs), 18 ternary y-genes (for the B pairs) and a
9 x 9 matrix gene that tells us how we can manipulate the binary z-genes for B pairs to ensure that
each team still has ten H and ten A games. Such a chromosome is shown in Figure 2 Our genetic
algorithm uses a population of around 100 such chromosomes, each with the same ascribed listing. A
new population is formed by using the three genetic operators: mutation, crossover and selection.

e Mutation consists of changing, with low probability, randomly selected digits from the chromo-
some. This can be done freely for any of the x or y values but a change to a z value must be
incorporated using a legal manipulation on the matrix as outlined previously. Changing an z-gene
forces two changes to the schedule, either HAAH or AHHA. Changing the value of a y-gene also
results in changing the schedule for two matches for the B pairs. Any change to the matrix gene
requires a change to at least three of the z-genes as the lowest order cycle within the directed
graph is of order three. Hence an allowed mutation of the matrix z-genes results in changing at
least three matches. One would consequently wish to make mutations to the z-genes with a lower
probability than mutations to the  and y genes.
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e Crossover is a technique whereby pairs of chromosomes mate and produce offspring whose genetic
material is a combination of the chromosomes of both parents. Crossover can only occur anywhere
along the xy part of the chromosome as indicated in Figure 3. One can also have multiple point
crossovers (Figure 4). Mutation and crossover produce an altered population, which is hopefully
not too different from the original population.

e In selection a new population is generated by choosing copies of the better members (but not
necessarily the best) of this altered population using a probability distribution weighted by the
fitness of the chromosomes. The fitness of a chromosome is a number determined by how well the
associated home/away sequence for each team approaches an alternating sequence and how well
the individual satisfies the other requirements requested by the WAFC. This will be discussed in
more detail below.

9 The fitness function

The main task of the fitness function is to try to give each team a sequence of home and away games
which is approximately alternating. To this end we need to penalise the fitness function if there are
consecutive home or away games. Since a sequence of A games in some part of a team’s H/A sequence
would imply a sequence of H games elsewhere, it is enough to consider away games only. Typically one
might want to penalise occurrences of longer strings of A’s more strongly than shorter strings of A’s. One
should also factor into these considerations the likelihood of sequences like ABG, where G = general
bye (in the week before round 12) and B = bye, which are not desirable because this team is away
from home for three consecutive weeks. The fitness of an individual could then be determined to be,
say 500, minus the penalties for each of the sequences listed in Table 4. Note that this penalisation is
simultaneously applied to all nine teams for each individual in the population for each generation. The
initial figure from which we subtract is arbitrary and may be varied during simulation depending on
how close we are to an optimal solution. Notice in Table 4 that one would want to typically penalise
an occurrence of AAA much more than two occurrences of AA, hence it is given four demerit points in
this particular assignment.

Penalty  Occurrence
1 AA, GBA, GAB, AGB, ABG, BGA, BAG
2 AAG, AGA, GAA
3 AAB, ABA, BAA
4 AAA, AAGB, AABG, ...
5 AAAG, AAGA, AGAA, GAAA
6 AAAB, AABA, ABAA, BAAA
8 AAAA
10 AAAAG, AAAAB, ...
15 AAAAA

Table 4: A possible penalisation scheme for occurrences of consecutive sequences of away games for the
nine clubs; A = away, B = bye and G = general bye.

The H/A sequences for each team are given in Table 2. SF for example has the H/A sequence
HBHAAAHAHHBGAHAHAHBAAHAH,

which would attract penalties for each of the underlined sections. In this particular case, according to
Table 4, SF would attract the penalty —8.
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Parents
0000000000
+

9@69669@1@999@99966@666@9@A7>v

LECEEEOEEOEE000E0eooncsee (M)

— offspring
CEEEORCEREE0EEHNREHNREE00ore0e0eeoe (M)

+f69999999@9@6@66669999@996969@6666@6A7>v

Figure 3: An example of a crossover between two individuals to produce offspring that have genetic sequences derived from both parents.
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Figure 4: Multiple point crossover at various places on the xy portion of the parent chromosomes.

10 The population dynamics

In this genetic algorithm simulation we may typically proceed with an initial population of 100 individ-
uals, which has allowed values of x, y and z genes. These chromosomes may have been generated by the
big wheel algorithm, or by manipulations of such solutions. These individuals all have the same listing
component and hence the same A pairs and B pairs of teams that play each other twice or thee times
respectively. Each individual also has a matrix gene.

These 100 individuals would be grouped into 50 pairs and would then be allowed to crossover,
typically with a crossover probability of approximately 0.05. This will produce 100 “new” individuals,
some of which may be unchanged from the parent population. Mutation can be added either before or
after crossover, and typically operates with a probability of the order of 0.003. This would mean that
one in every three individuals in our population of 100 would be mutated. This mutation would take
the form of a change in the values in the = or y genes, or a contorted change in z-genes through the
matrix gene.

The effect of mutation and crossover is to ensure that we get a new population that is not very
different, from the previous one. The fitness of some individuals will have increased slightly while that
of others will have decreased. The next step in the algorithm is to apply selection. Because individuals
are selected with a probability weighted according to their fitness, the new population will consist
predominantly of fitter individuals from the previous population, and is likely to have a greater average
fitness.

The whole procedure of mutation, crossover and selection is now repeated. With each iteration we
hope for a small increase in fitness, and when no further increase seems likely we halt the process and
use the best individual as a schedule for the competition.
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Abstract

This paper discusses methods used to collect statistical data at the Australian Tennis Open. The
process of data entry, and the uses of the statistics are discussed, along with methods used to ensure
consistency. Areas where the statistics may be misinterpreted are highlighted, and suggestions for
improving the process are made.

1 Introduction

For many fans the discussion of statistics associated with their particular sport is an integral part of their
enjoyment. For many events, where previously limited statistics could be gained from the newspapers or
magazines the following day or week, statistics are now given real time on live broadcasts or via the web.
These statistics are not only used by the fans, but by modellers such as Magnus and Klaassen [2, 3].
To satisfy the media and the public’s thirst for statistics, the collection and dissemination of data
concerning the event is now an important element in the organisation of many sporting events. The
Australian Open Tennis Championships are no exception.

The Australian Open is unique among the grand slam championships in that statistics are collected
at all courts for all events. As at 2001, the other grand slams only collected statistical data on their
main courts, and only for the main events. At the Australian Open, statisticians are rostered on all 22
courts, for senior, junior and veteran events, singles and doubles. This even extends to the qualifying
tournament. However radar guns are installed only on seven courts (Rod Laver Arena, Vodaphone Arena,
Show Courts 1, 2 and 3, and Courts 6 and 7), so service speed is only measured on some matches.

Early in 2000, we wrote to Tennis Australia requesting some data from the 2000 Open for analysis.
They replied with a request for our assistance in improving the professionalism of their “scoreboard
operators”. Traditionally this role had often been filled by ball persons. These applicants had passed
the maximum age allowed for the position of ball person, but wanted to continue an association with
the Open. While interested in tennis, these applicants had no inherent interest in statistics, and the
Open organisers had received some negative feedback on their attitude and the quality of statistics
collected. We were requested to publicise the position among our students. This resulted in about 15
people associated with Monash and Swinburne Universities, including the authors, forming part of the
60 strong army of tennis statisticians for the 2001 Australian Open. Some continued in this role in 2002.

In this paper we describe the methods used to collect statistical data at the tennis, and discuss some
associated statistical issues.

*The authors would like to thank Chris Simpfendorfer and the staff of the Australian Open for their assistance in
collecting and providing statistical data.

105



106 S. R. Clarke and P. Norton

2 Selection of statisticians

The human resources personnel handle the selection and employment of tennis statisticians in a very
professional manner. Applications are called early in the previous year, and applicants are required to fill
out an application form and attach a resume. Selected applicants are interviewed, and undergo a short
test collecting data on one game from a television replay. Essential skills are knowledge of tennis and
some familiarity with computers. Successful statisticians are notified late in the year, and are required
to attend a training evening. They were also required to attend the Nike junior tournament, at which
statisticians from previous years showed beginners the ropes. While old hands usually only attended
one day of this tournament, beginners could return a second day if they felt it necessary.

The position carries a small stipend, and a daily allowance for meals. In addition, a full uniform
of shirts, shorts, tracksuit, runners, socks and hat is provided. The staff ID gives ground entry to all
days of the tournament, and a guest ground pass is also provided. The statisticians are provided with
a common room during the Open. Clearly the main motivation in performing the job for most, if not
all, of the statisticians is to be a part of the Open. The position is one that suits university students,
for whom the pay is reasonable and the intrusion into their holidays marginal. However few full-time
employees would be willing to give up two weeks of their holidays to undertake the position. For this
reason, average tenure is a few years, and turnover is great. Virtually all the statisticians were under
25, many under 20. This was in contrast to the line umpires, who were a more mature group. To be
an umpire requires one to join an association, do regular training, and have a long term commitment
to quality umpiring. Perhaps with the increasing number of people applying for the position, this is
something tennis statisticians could investigate.

A couple of suggestions from the authors to improve the procedure were taken up by the organisers.
We suggested changing the name from Scoreboard Operator to Tennis Statistician, as the task required
much more than the original name implied. We also suggested removal of some sections from the
application form, such as parental approval for night duty, as these implied young people were required.

3 Statistics collection at the Australian Open

The tennis statistician sits on court, usually just behind the umpire on the outside courts, with a note-
book computer on a small table linked to the central IBM scoring network. The show courts usually have
a purpose built stand capable of seating three statisticians. Conditions are often difficult, particularly
on hot days. The screen can be hard to read in the sunlight, and umpire’s chairs, television cameras
and the like sometimes impair court vision. Data entry is via the keyboard, and usually requires just
the arrow and the <Enter> keys. While this may sound antiquated, with little practice it is extremely
quick, and can even be performed without looking at the keyboard or the screen. With the cramped
conditions on court, there is often little room for mouse operation anyway. Statisticians resort to hand
sheets if the central computer goes down, and must then catch up computer entry during a break in
play.

The statistician works independently of the umpire, but has to ensure the score is consistent with
what the umpire calls. When the statistician enters the point result, the information is relayed back to
the central computer, which in turn updates the on court scoreboard, the various scoreboards around
the venue, and the statistics which go live to the media and the internet. When match point is won,
the computer advances the winner in the draw. Hence the statistical data entry scoring system is a
real-time system, and the heart of the Australian Open. The statistics are also reported back to players
and coaches in the form of a two page summary forwarded after the match.

Interestingly, in singles, the statistician does not enter the winner of the point, but the last player to
make a play on the ball. Thus an entry of Agassi/forehand/forced error would result in the computer
crediting the point to Agassi’s opponent and advancing the score appropriately. The person serving the
first game of the match has to be entered, and the computer tracks the server for the remainder of the
match. For singles, each serve is entered as one of in play/fault/winner/ace (lets are not recorded), the
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point conclusion is entered as player to make last play, one of forehand/backhand/overhead/volley, and
one of unforced error/forced error/winner. In addition, if either or both players are at the net when
the point is concluded, this is entered. While this may sound straightforward, a left-handed player with
double-handed forehand and backhand requires vigilant concentration. Background noise (e.g. from
Swedish fans) can make it difficult to hear line and central umpires’ calls, and one cannot look at the
scoreboard for confirmation (since the scoreboard is awaiting your entry). The program will not accept
the entry unless all required fields are entered, and protects against certain errors. For example, if the
first serve is in play, and the second is a fault, the program will flag an error, which must be corrected
before the data is accepted and the next point can be entered. Some statistics of interest that are not
collected include the number of strokes in a rally, the side (forehand or backhand) of any volleying
winners or errors, and the side of the opponent’s court to which winning shots are hit.

The main subjective element comes in with forced and unforced errors. Conceptually a forced error is
the result of the opponent’s good play, whereas unforced is the result of a player’s poor play. The decision
is usually made on the basis of whether the player has had time to prepare and position adequately to
return the ball. Statisticians are regularly observed by experienced assessors to check for uniformity of
application. However there remain situations which training will not have covered specifically. (While
being assessed, in one of the author’s matches, a player fell over while attempting to return the ball,
and managed an ineffectual play on the ball while lying on his back. The player clearly did not have
time to adequately prepare, but then it was his own fault that he fell.) Two statisticians are rostered
for each court, and each works for an hour followed by an hour’s break. Thus interpretation may change
within a match. As the tournament progresses, fewer statisticians are required, and the less capable are
rostered off. To ensure greater consistency for finals, five “gun” statisticians will usually be chosen. One
will record the men’s singles from the quarter finals onwards, another the women’s singles, etc.

For doubles, data entry is simplified. Service result is as for singles, the service return is recorded as
one of in play/forced error/unforced error/winner, and finally the pair to win the point is recorded. At
the beginning of the first two games of each set, the statistician has to enter the server and receiver of
the first point. With unknown, or similar partners, and with some teams wanting to keep their intentions
from their opponents until the last second, this can be difficult. With statisticians changing midway
through sets, care must be taken in written cues to player identities. One quickly learns to use colour of
shorts rather than shirts for male players—the former are rarely changed during a match. Thus while
doubles statistics will not give information on the individual players’ statistics throughout the match,
they will show their serving and return of serving statistics.

Server  Set  Point 1st serve 2nd serve Last Point action At net?
score  score play

Agassi  5-2 0-0 in play Clement,  foreh  forc err

Agassi  5-2 15-0 fault in play  Clement foreh  winner

Agassi  5-2  15-15 in play Clement volley  winner  Clement

Agassi  5-2  15-30 ace

Agassi  5-2  30-30 fault in play Clement  backh unfor err

Agassi  5-2  40-30 fault in play Agassi  backh  winner

Table 1: Audit trail for the last game of the 2001 Australian Open men’s singles final.

The Audit trail for the last game of the 2001 Australian Open men’s singles final is shown in Table 1.
The authors obtained similar data for all men’s and women’s singles matches at the 2000 Australian
Open. Table 2 is a match summary as produced by the statistics collection package.
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4 Radar

Statisticians also operate the radar facility which is installed on the main courts. This is used to collect
data on the speed of service. Radar is not operated on all matches, and a separate statistician is allocated
when necessary for this function. The program is mouse operated. The operator has to enter the server
of the first game, and reset the radar just before each player serves. Since the speed may be registered
for other movements, such as a bird or leaf, this needs to be done as late as possible. The statistician
then enters the area of the court in which the ball lands. For faults, this can be inside the singles court
but long, into the net, or outside the singles court. For good serves, the service box is divided into
wide, middle or centre. The radar operator also enters if the serve is an ace or winner, or, at the point
conclusion, the winner of the point. The program automatically keeps track of the score and hence
the server. Periodically the radar will show a speed obviously incorrect, which the statistician must
manually edit during a break.

Table 3 shows data as published on the World Wide Web (www.ausopen.org) by the Australian
Open, which incorporates statistical and radar information. Similar data for 2001 and 2002, together
with the point-by-point data from the men’s and women’s singles at the Australian Open in 2000, have
been used by Norton and Clarke [4] to compare the server’s advantage at Wimbledon, and the French
and Australian Opens, and to compare singles and doubles service characteristics. Data for this paper
were also obtained from such summaries for 2001 and 2002. The statistic that is missing is the percentage
of points won on serve. Interestingly this is the parameter that is used in most models of tennis, such
as Croucher [1] and Pollard [5]. However, it is easily calculated from the first serve percentage, winning
percentage on first serve and winning percentage on second serve.

Clement Agassi
Set 1 2 3 M 1 2 3 M
1st serve points 18 11 18 47|21 15 17 53
1st serve points won 15 5 & 28|15 13 10 38
2nd serve points 16 11 16 43| 4 7 17 28
2nd serve points won 5 6 8 19 1 3 9 13
1st serve aces 4 1 0 5 2 4 1 7
2nd serve aces o o o o) 0 O 0 o0
1st serve winners 0 0 1 1 2 1 0 3
2nd serve winners 1 0 0 1 0 0 0 0
double faults 2 3 2 7 1 0 0 1
FH unforced errors 3 3 9 15 5 1 6 12
FH winners T2 7 16| 2 1 4 7
BH unforced errors 7 5 8 20 6 4 6 16
BH winners 0 2 6 8 0 1 5 6
OH unforced errors 0 0 1 1 0 O 0 0
OH winners 0 0 1 1 0 O 0 0
Volley unforced errors | 0 0 0 0] O 1 1 2
Volley winners 1 0 1 2} 0 0 1 1
Net points won 1 1 3 5 2 4 5 11
Net points lost 0 1 3 4 1 1 2 4
Break opportunity 1 0 5 6 2 3 10 15
Break conversion 1 0 1 2 2 2 3 7

Table 2: Match summary for the Clement—Agassi final, Australian Open Men’s Singles Championship,
2001.
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Match summary Safin Johansson
1st serve % 90 of 142 = 63% 64 of 115 = 56%
Aces 13 16
Double faults 2 4
Unforced errors 36 43
Winning % on 1st serve 60 of 90 = 67% 55 of 64 = 86%
Winning % on 2nd serve 28 of 52 = 54% 27 of 51 = 53%
Winners (including service) 39 53
Break point conversions 3 of 6 = 50% 3 of 14 = 21%
Net approaches 29 of 53 = 55% 36 of 49 = 73%
Total points won 121 136
Fastest serve 209 kph 209 kph
Average 1st serve speed 187 kph 179 kph
Average 2nd serve speed 144 kph 140 kph

Table 3: Statistical summary of the 2002 Australian Open men’s singles final.

5 Some statistical issues

In interpreting the statistics, and comparing statistics between majors, certain points should be borne
in mind. Some of the statistics are very objective, while others require varying degrees of subjectivity
on the part of the statistician. Since the statistician operates the scoreboard, most point results would
be correct. However there may be cases where a statistician gets the score incorrect, and has to re-
enter the data. This requires backtracking to the point in question, and re-entering the point and the
subsequent points. If the statistician cannot remember, there may be time pressures to enter an ace,
as this is the quickest to record. However such cases would be very isolated. We do not know if there
is any rationalisation between the statisticians’ record and the umpire’s score sheet. This would be a
simple way to ensure that the number of points won by each player was correct, even if the sequencing
was astray. There is a little subjectivity in deciding between a winner and a forced error, as it depends
on the amount of racquet the defending player gets on the ball. By far the greatest degree of judgement
is needed for the forced/unforced error judgement. It can depend on the speed of the ball, the position
of the player and his opponent, and the event. Thus an unforced error in men’s tennis may be forced
in women’s or junior events. The authors feel much more group training could be put into this aspect.
However many of the published statistics combine forced and unforced errors, which minimises the
effects of subjectivity of classification.

Some of the definitions may seem surprising, and could easily be misinterpreted. For example, for
2002, a volley includes a half volley, defined as a “ball struck down low (at feet) just after the ball
has hit the ground with minimal to no backswing”, and there was sometimes confusion on the correct
recording of a drive volley. When a player is at the net is also difficult to gain uniformity of application.
Thus a point recorded as an Agassi winner with Rafter at the net may be interpreted as a passing shot,
when in fact it was a drop shot, played by Agassi with both players at the back of the court, which
Rafter didn’t get his racquet to. There is also a tendency to sometimes make adjustments for the skill of
a particular player. Thus the same shot classified as a forced volley error by Agassi may be recorded as
unforced when hit by Rafter, since Rafter is a known better volleyer than Agassi. Of course, allowances
are made for the power differences between men’s and women’s tennis. Thus virtually all errors off a
man’s first service would be classified as forced, whereas this might only apply to the strongest of the
women’s first serves. Prior to 2002, there was little attempt to achieve consistency of definition across
major championships. This was rectified to some extent for the 2002 championships when definitions
were agreed to by operators of all the major tournaments.

The authors feel there should be some study made as to the interpretation of the statistics by the
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public and the media, to produce underlying definitions to be used in marginal cases. For example, a
winner implies the player hit a shot that was beyond any reasonable expectation of return—the player
won the point off his own racquet by hitting an un-returnable good shot. In practice, this translates into
a working definition of a winner as any shot which the opponent does not get his racquet to, or which
tips the racquet and goes behind. One of the authors had a player misjudge his approach to a ball on
which he had a play, which then hit his foot. Under the definition, this is a winner, as the player did
not get his racquet to the ball. However under an underlying definition based on the interpretation that
will be made of the statistic, this is an unforced error. Similar problems arise when players completely
mishit the ball.

One problem of the statistical packages used was the absence of any concept of a missing value. If a
statistician missed a point, and had no idea whether it was an ace or winner or whatever, they had to
enter something (and quickly!). If a radar operator missed the court area the ball landed in, the package
insisted they enter something. If the facility for entering a missing value was available, the statistics could
be made more reliable by promulgating a culture of not making statistics up. When operating radar, the
equipment sometimes gave a speed reading obviously incorrect. Statisticians were instructed to insert
the average value of the player for the appropriate serve up to that point. This clearly depends on when
the correction is made, and affects both the mean and variation of the recorded speeds. A simple facility
to enter a missing value would be preferable. Another interesting point was that although recorded, the
speed of faults was not stored. While the programmers obviously felt they were only recording statistics
of valid serves, we felt much useful information was discarded. Surely coaches and players would be
interested in differences between speeds of faults and good serves, as it may give a lead to corrective
action.

One of the reasons for collecting statistics is to increase our knowledge of the game of tennis. While
summary statistics are available via the web, detailed modelling requires the point by point data. This is
difficult to obtain. Despite the full cooperation of Australian Open staff to the authors’ original request
for data, it still took several months to obtain the point by point statistics for the 2000 Open through
IBM, and we have not obtained any of the radar data. In addition, different years’ data are in different
formats. We have not attempted to obtain data from the other grand slam tournaments, but suspect
these would be different again. With a little effort, the data from the tournaments could be collected
in one place. The data could then be documented, checked and merged where necessary. For example,
data collected by radar operators and statisticians could be compared. The data from all tournaments
could then be put in the same format, archived and made available to interested parties. There may be
issues of ownership and cost to be resolved, but such an archive would greatly enhance the value of the
data.

6 Conclusions

It is interesting to compare the collection of statistics in tennis with other major Australian sports
such as football and cricket. In AFL football, statistical data collection as undertaken by Champion
Data requires two people—one caller and one recorder. The recording can be done live or from a
television replay. With eight matches per weekend, there are at most two or three simultaneous matches.
Furthermore, the matches are played outside normal working hours. This allows a small consistent team
to be built up, which remains relatively stable over the years. Similarly, cricket statistics as shown live
on television can be recorded from the television broadcast by a team of three statisticians. This means
the same small team can be used for overseas matches. There is also some time between balls to discuss
interpretation.

The collection of statistical data at the Australian Open requires a large team of over 60 statisticians
for a short period of the year. Each statistician is generally alone on the court, and there is little time
for reflection. To continually improve the quality of the collected statistics requires increased effort to
reduce turnover and improve training. Perhaps an association of sports statisticians, similar to that
of the tennis umpires, might be a path toward maintaining interest of statisticians past their youth,
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and reduce turnover. The basic recording and reporting program could be made available as a stand-
alone system for a notebook computer, so that statisticians could record matches during the year,
and compare their analysis to that of a “gun”. An exchange program between the major tournaments
might encourage greater uniformity of interpretation between the tournaments. Perhaps some statistics
courses could include a practical component of data collection. It would give students an appreciation
of the commitment, scale and intensity of the data collection operation, and its limitations. Most of our
students who participated certainly thought it a worthwhile exercise.

For their part, the authors gained a lot from participating in the data collection. It gave us an
appreciation of the practical difficulties in collecting data, and in ensuring consistency among data
recorders. The original aim in contacting Tennis Australia was to obtain some statistics for analysis,
and this aim was realised. However being intimately involved with the collection gives some ownership
of the data, and a feeling for where errors may not be random and statistical assumptions may not
hold. While preferring to model and analyse data, we still enjoyed the experience of getting our hands
dirty in the collection. With our wider experience, we could also give the younger tennis statisticians an
appreciation of the uses made of the data collected. We would certainly recommend to any statistician
to take the opportunity to participate in a similar exercise should the chance arise.
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Abstract

Let p and g be the probabilities of players A and B, respectively, winning a point in a game of tennis
(p+q = 1). We describe a program which has been devised and implemented to give the probability
of A or B winning the match (“best of three tiebreaker sets”) from any stage of the match.

1 Introduction

It is possible, based on a study of earlier matches between two players under similar match conditions,
to give each a probability of winning a point in any subsequent match between them. The probabilities
may be subjectively altered, as it is felt warranted, and this may occur as the match is in progress.
What are the respective chances of the two players winning the match, from any particular stage of the
match?

A corresponding question was considered by Croucher [2], but for a fixed probability of winning a
point and with regard to a single game.

Our players, A and B, will be assigned respective probabilities p and ¢ of winning any point
(p+q=1). In the first place, these may be determined as the proportion of points won by each in
all matches played previously under similar conditions. A more detailed analysis, such as that of Carter
and Crews [1], might consider separately the proportions p4 and pp of points won by A and B, respec-
tively, in service games, so that, for example, g4 = 1 —p4 is the probability of B winning a point against
A’s service. This level of detail is not required for our purposes.

It is crucial to our work that “the outcome of any point, game or set is independent of the outcome
of any other point, game or set” (Pollard [4]). Some doubt has recently been cast on this statement
by Klaassen and Magnus [3]. They concluded that winning a point in tennis has a positive effect on
winning the following point and that at important points the server has a disadvantage. However, they
also conclude that divergence from independence is small, particularly for strong players, and “in many
practical applications concerning tennis—such as predicting the winner of the match while the match
is in progress—the iid hypothesis will still provide a good approximation if we correct for the quality of
the players” [their emphasis]. We explicitly allow this correction at any stage of the match, and so are
in fact reinforced in our application of independence.

*This project began as an assignment carried out by the first and third authors in a subject taught by the second
author.
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Our aim is to describe the calculations in the implementation of a publicly-available program which
gives the probability of A or B winning a “best of three tiebreaker sets” match, from any stage of
the match, as well as the probability of winning the current game or set. This would be of interest to
media commentators and to those who might be having a bet on the result. Since it assumes an overall
probability of winning a point, whether serving or receiving, results produced by the program should
be quoted only after an even number of games have been played.

For example, if player B is initially given a probability of only 0.44 of winning a point (based on
past experience), but has just won the first four games of the first set, would you bet on B to win that
set? Would you bet on B to win the match? What odds would you accept? Our calculations show that,
if you still believe B’s previous form to apply, then there is a 75% chance of winning that set, but only
a 20% chance of winning the match. If you feel it warranted to raise B’s probability of winning a point
to a modest 0.5, then there is better than a 90% chance that B will win this set and better than a 70%
chance of winning the match.

2 Conditional probabilities of winning a game

Let A and B have probability p, g, respectively, of winning a point (p + ¢ = 1). We take the point of
view always of A winning a game, set or match. If A leads 30-15, for example, then A wins the game by
winning the next two points (probability p?), or two of the next three including the third (probability
2p?q), or by reaching deuce (probability 3pg?) and winning from there. The probability d of winning
from deuce satisfies

d=p* + 2pqd,
so that ,
p
d= —. 1
p2 +q2 ( )

Hence the probability of A winning the game when ahead 30-15 is given by

2 2 s P

p~ +2p°q + 3pg FrE
Such calculations have previously been given by Croucher [2], for example.

We need to determine the corresponding probability from any stage in the game in such a way that
it may be readily programmed.

Let the current scoreline in an uncompleted game be specified as x points won by A (z > 0) and
y points won by B (y > 0), including points beyond deuce. The value of z or y is incremented by 1 as
each point is played, until the game is won. Notice that: if y < 2 then z < 3; if y = 3 then z < 4; if
y > 4 then x = y (the score is deuce), or x = y + 1 (advantage A) or x = y — 1 (advantage B). Let
G(z,y) denote the probability that A wins the game from this scoreline, and put Gy = G(0,0).

If, initially, y < 2 and A wins the game without reaching deuce, then A must win a further 3 — z
points as well as the final point of the game, with B winning at most a further 2 — y points. The

probability of this is
2—y
3—x+k\ ,4_
Gi(z,y) =) < L >p4 k.

k=0

If, still for y < 2, the game first reaches deuce then A wins a further 3 — 2 points and B wins a further
3 — y points. The probability of this happening is

6—x— w3
GZ(may):< 3_yy>p3 q3 y:

and the probability that A then wins the game is G2 (z,y)d.
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Values of z and y Value of G(z,y)

y<2(soz<3) Gi(z,y) + Ga(z,y)d
y=3and z <3 Go(x,3)d
y>3andz=y+1|p+qd

y>4andz =y d

y>4dandz=y—1| pd

Table 1: The probability G(z,y) that A wins a game, given the number of points  won by A and the
number y won by B.

Take x = 2 and y = 1 to reconstruct the example above in which A is leading 30-15. Take z =y = 0
to determine Gy.

The calculations are easier when y > 3. The complete situation is summarised in Table 1.

When the games in a set reach six all, a (twelve-point) tiebreaker game is played. For us, the only
effective differences between a tiebreaker game and an ordinary game are that the tiebreaker is played
to seven points, rather than four, with “deuce” reached after six points all, rather than three points all.
Let B(z,y) be the probability that A wins a tiebreaker game, given that A has already won z points
(z > 0) and B has won y points (y > 0). Put By = B(0,0) and

5—y
6—z+Fk\ 7,
Bl(way)zz ( k >p7 qka

k=0

12—z — —x 6—
Bg(w,y)=< 6y y>p6 Tqo.

Then, in the same way as we obtained Table 1, the values for B(x,y) are given in Table 2. The expression
for d in equation (1) is used again; it is the probability that A wins the tiebreaker game from six points
all.

Values of z and y Value of B(z,y)

y <5 (sox<6) B (z,y) + Bz(z,y)d
y=6and z <6 By (z,6)d
y>6andez=y+1| p+qd

y>T7andz =y d

y>T7andz=y—1| pd

Table 2: The probability B(z,y) that A wins a tiebreaker game, given the number of points 2 won by A
and the number y won by B.

3 Conditional probabilities of winning a set

Suppose, in an uncompleted set, that A has won g games (¢ > 0), B has won h games (h > 0), and,
in the current game of that set, A has won z points and B has won y points. Let S(g, h;x,y) be the
probability that A wins the set. If g = h = 6, then the current game is a tiebreaker.

In the manner of an odometer, the point counters z and y are put back to zero with each new game
and the game counters g and h are incremented by one, according as who wins the game, A or B,
respectively.

Notice that: if h < 4 then g < 5;if h =5 then g < 6; if h = 6 then g =5 or 6.

Recall that the probability that A wins a game (not a tiebreaker) from love all is Go. Put Hy = 1—Go;
this is the probability that B wins a game. The probability that A wins a tiebreaker game is By.
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Suppose initially that z =y = 0.
If h <4 and A wins the set other than 7-5 or 7-6, then A must win a further 5 — g games as well
as the final game of the set, with B winning at most a further 4 — h games. The probability of this is

4—h
5—g+k\ -
sigm =3 (P74 et
k=0

If A wins the set 7-5, then A must win a further 5 — g games and B a further 5 — h games, so that the
score reaches 5-5, and then A must win the next two games. The probability of this is
10—g—nh

sstom = (9o

If A wins the set 7-6, then the score must first reach 5-5, then A and B must win one game each (there

are two ways to do this), and then A must win the tiebreaker game. The probability of this is

10—g—n~h _ _
satg. =217 ") G0 o

When h < 4, we therefore have
S(g) h) 0)0) = Sl(g) h) + 52(97 h) + 53(97 h)

It is easy now to complete Table 3, giving the probability that A wins a set after any number of
completed games in the set.

Values of g and h | Value of S(g, h;0,0)

h<4(sog<b5) Si(g,h) + S2(g,h) + Ss(g, h)
h=5and g<5 | S:(g,5) + Ss(g,5)
h:5andg:6 G0+HOB0
h=6andg=>5 GoBy

h=6and g=2=6 By

Table 3: The probability S(g, h;0,0) that A wins a set, given the number of games g won by A and the
number h won by B, with no points played of the subsequent game.

Now consider the more general situation in which z +y > 0, and put H(z,y) = 1 — G(z,y). We
must determine all the variations of the following basic result, which is easily seen to be true. When
h <4 and g <4, then

S(g,h;z,y) = G(z,y)S(g + 1,h;0,0) + H(x,y)S(g,h + 1;0,0).
One such variation, for example, is if h < 4 and g = 5. In that case,
S(g,h;2,y) = G(z,y) + H(z,y)5(g, h + 150,0),
since A wins the set if B loses the current game.
All the possibilities are given in Table 4.
4 Conditional probabilities of winning the match

Let M(s,t;g,h;x,y) be the probability that A wins the “best of three tiebreaker sets” match, when A
has won s sets and B ¢ sets (s =0 or 1, ¢t = 0 or 1), with g, h,  and y having their previous significance
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Values of g and h | Value of S(g, h;z,y)

h<d4and g<4 | G(z,y)S(g+1,h;0,0)+ H(x,y)S(g,h+ 1;0,0)
h<4andg=5 | G(z,y)+ H(z,y)S(5,h+1;0,0)

h=5and g <4 G(:L“,y)(Sz(g—Fl 5)+ S3(g +1,5))

h=5and g=5 | G(z,y)(Go + HoBy) + H(z,y)GoBy

h=5and g=6 | G(z,y)+ H(x,y)Bo

h=6andg=5 | G(x,y)Bo

h=6and g=6 | B(x,y)

Table 4: The probability S(g, h;z,y) that A wins a set, given the number g of games already won by
A and the number h already won by B, and the number z of points won by A and the number y won
by B in the current game (z +y > 0).

Values of s and ¢ | Value of M (s,t;9,h;z,y)
t=s=0 S(g, h; @, y)(So + ToSo) + T (g, hs x,y)S3

t=0ands=1 (g,hx y)+T(g,h;z,y)S0
t=1lands=0 | S(g,h;z,y)So
t=s=1 S(g,h;z,y)

Table 5: The probability M (s,t; g, h;z,y) that A wins the match, given the number s of sets already
won by A, and the number ¢ won by B, the number g of games won by A and the number A won by B
in the current set, and the number z of points won by A in the current game of the current set and the
number y won by B

for the current set. The latter are all put back to zero with each new set, and s or ¢ is incremented by
one, depending on who won the previous set, A or B, respectively.

Put T'(g,h;z,y) = 1 — S(g,h;xz,y), the probability that B wins the current set, and put Sy =
S5(0,0;0,0) and Ty = 1 — Sp.

It is easy to arrive at the results in Table 5. This is our final table, giving, by reference back to the
earlier tables, the probability of winning a match from any stage of the match.

Dy S
File Edt F —Player & :

B Pla_-'r'e' A | Name: IF'atrick R after
Points » o ) Sets

Frobability of winning ary point: ||:|.5
| 00 -« | 0
— Player B

Probability of | Name: || jeyton Hewitt
Current Point N . ) 0.0o
Current Gam Probability of winning any point: ||:|.5 0.0
Current Set: 0.00
Current b atc Beset | Exit | Ok | 0.00

Figure 1: Player details entry screen.

5 Computer implementation

A computer application has been written in Visual Basic to accompany this paper. The program calcu-
lates the current game, set and match probabilities of winning for each player in a game of tennis (“best
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Dynamic Tennis Probabilities Calculator -0 x|

File Edit Help

— Player & - Patrick Fiafter————————— [~ Flayer B - Lieyton Hewitt
Paints Games Sets Paints Games Sets
50 o[ [2 [o |00 5 | o
Probability of WWinning: Probability of WWinning:
Current Point: 0.50000 Current Point: 0.50000
Current Game: 0.81250 Current Game: 018750
Current Set: 010156 Current Set: 085844
Current b atch: 030073 Current b atch: 0.E3522

Figure 2: Main screen.

of three tiebreaker sets”), and recalculates them every time the score changes. The program may be
freely downloaded from the following web site: http://www.progsoc.org/ shaman/dynamictennis.html.

When the program starts, it asks for the details of the players: the user must enter each player’s
name and the first player’s probability of winning a point. The details screen is shown in Figure 1.

The user is then presented with the main program screen, shown in Figure 2. This shows the current
score of each player, as well as each player’s chance of winning the game, set and match. The user clicks
on the “+” buttons to change the score, incrementing that player’s point score by 1 (in the terms of
the above analysis). Each time the score is altered the probabilities for each player, other than that for
the current point, are recalculated.

If, at any stage of the match, the user wishes to modify the estimate of a player’s chance of winning
each point, the user can click on the “Edit” menu and choose “Probabilities”. The “Edit” menu also
provides the ability to “Undo” the last entry. This option can also be accessed using the standard Ctrl-Z
keyboard shortcut.

For other forms of experimentation (or if you arrived late), it is possible for users to set the points,
games and sets won by both players to values of their choosing using the “Scoreline” option in the
“Edit” menu. An example of this screen is shown in Figure 3: any of the windows may be altered. If an
impossible scoreline is entered, such as a games score of 6-3 for a set in progress, then an invalid score
message of some form is received. There are restrictions on the use of this feature for scorelines that
involve tiebreaker games, and in certain other cases.

— Player & - Patrick Rafter—————————————
Points: Games: Sets: ;IEIEI
File Edit Help
— Player b - F'atlic:k I 30 ﬂ D itk

Faints = Sets

—Player B - Lleyton Hewitt——————————————— T
| 30 J |- Puaints: Games: Sets: | 0
Probability of Winn 00 5 D
Current Point: 0.50000
Current Game: 018750
Current Set [ IH=EeEE e 0.93344
Cument Match: Games must be less than 7 063922

- Reset | Qancell Ok |_

Figure 3: Alter scoreline screen.
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Abstract

Under the assumption that goals are scored at random times in soccer, using previous history
it is possible to calculate the probability that a match will end in a draw or in fact with any
scoreline. Common techniques include the fitting of Poisson or negative binomial distributions and
a comparison is made of each using the results of the English Premier League. Theoretical scores
are matched with those that occurred in practice. It is found that the negative binomial distribution
yields a better fit of goal scoring than does the Poisson distribution, but requires much more data
collection and calculation.

1 Introduction

One of the most popular and played sports worldwide is soccer, also known as Association Football,
with great interest in the World Cup between the 32 qualifying teams in May/June 2002. The game is
played between two teams each of 11 players including a goalkeeper who is the only player allowed to
handle the ball.

There are a great many sources of information of soccer statistics, particularly those matches played
in the UK, where examples include the yearbooks by Rothmans [14] and Playfair Football Annuals [10].
Nowadays the internet is a rich source of information regarding current and past matches with sites
such as www.soccernet.com being widely accessed.

Apart from the widespread interest of the fans who follow the fortunes of individual teams, there is
another important reason why many thousands of people are interested in the final scores. This involves
gambling on the outcome in an activity known as Soccer Pools, in which punters can win vast amounts
of money by using their skills to try and predict the outcome of individual matches.

In particular, gamblers in the Soccer Pools try to predict those matches that will end in a draw. More-
over, the idea is to attempt to identify those drawn matches where there will be the most goals scored
since these will be the first numbers selected in the winning combination. Information regarding the
precise rules of the Pools can be found at the URL http://www.nswlotteries.com.au/games/pools.html
which contains the following description from the promoters:

Six from 38 Pools is a Lotto style game where to win, you must select 6 numbers from the 38
drawn each Saturday evening. 6 from 38 Pools is known as ‘The Smart Choice’ because you
only have to pick 6 from only 38 numbers. The winning numbers are based on the outcome
of English or Australian soccer matches but you don’t need to know anything about soccer
to enter or to win.
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Six winning numbers are drawn first, followed by one supplementary number. You will win
a prize in one of five prize divisions if you correctly select one of the following combinations
in a single game panel.

In Australia, the Pools consists of trying to predict the six high-score drawn matches among thirty-
eight selected from the UK FA Premiership and lower divisions 1, 2 and 3. On occasions, in the UK
off-season, it will revolve around matches played in Australia. In 2000-2001, a total of around $8,000,000
was invested in the Pools across the country to identify those six matches that will have the highest
score draws.

Although it is certainly true that many winners of the Pools know nothing about soccer, this does
not stop keen students of the game trying to use some science to make a profit. This involves using the
data available to determine those matches that are most likely to end in a draw.

From a statistical point of view, one method of achieving this aim is to fit an appropriate model to
the number of goals scored by each team and use this information to select the most likely high-score
draws.

2 Fitting statistical distributions

The idea of modelling sporting data is not new with some of the earlier published research being that by
Wood [17] who claimed that batsmen’s scores in cricket follow a geometric distribution and Moroney [8]
who fitted distributions to soccer goal scoring. In soccer, goals are relatively rare with 57% of matches
having a total of two goals or less scored and initial assertions that they occur at random times. For
this reason it is tempting to use the Poisson distribution to fit the number of goals scored.

However, studies by Moroney [8], Pollard et al. [11] and Norman [9] suggest that within a match, a
team’s goal scoring rate may change as the match develops. That is, a team that is losing may concentrate
on attack in the hope of trying to level up the score while running a greater risk of conceding even more
goals. This has led to using models based on the negative binomial distribution which has proven in some
cases to yield a superior fit of actual data. One example is given in Table 1. This shows a summary by
Pollard [12] of the number of goals scored in 924 matches in the English First Division Football League
during 1967-68. A negative binomial distribution using equation (1) was used to calculate the expected
number of goals:

k+r—1

Pr(Number of goals scored = r) = ( b1

>pk(1_p)r, TZO: ]-7 27 37 R (1)
where k£ > 0 is an integer and 0 < p < 1.
If the method of moments is used, where m is the sample mean and s? is the sample variance, then

m2

m
p= 2 and k= pop—

In Table 1, the mean number of goals scored per match is m = 1.51 with a variance of s> = 1.75.
As can be seen from this table, the negative model fitted the data extremely well, as supported by a
Chi-square test with a p-value of 0.57.

Other attempts to fit statistical distributions to soccer include the works of Reep and Benjamin [13],
Hill [6], Maher [7] and Croucher [4]. The evidence of a home ground advantage has been well explored
by Pollard [11] and Courneya and Carron [3], while Clarke and Norman [1] and Clarke [2] provide a
model based on that of Stefani, [15] and [16], that looks at winning margins taking into account both
home and away performance.

Indeed, any model that tries to predict the outcome of any sporting event must, properly take account
of the home ground advantage since it is well known that, in the vast majority of cases, teams will exhibit
a better performance when playing in front of their home crowd. The next section looks at models that
use both the Poisson and negative binomial distributions to predict the combination of scores of both
teams in a soccer match.
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Number of goals Observed Expected

0 225 226.6

1 293 296.4

2 224 213.9

3 114 112.6

4 41 48.3

5 15 17.9

6 9 5.9

7+ 3 2.5

Total 924 924.1

Table 1: Observed and expected number of goals scored in 924 English soccer matches in 1967-68 using
a negative binomial distribution.

3 Poisson and negative binomial distribution models

The Poisson distribution typically represents events that occur randomly in a fixed time period. If this
average rate is represented by the parameter A, the event is the scoring of a goal and the time period is
the duration of a match, then we have:

e AN

r!

Pr(Number of goals scored = r) = , r=0,1,2, 3, ..., (2)

To keep our research as current as possible, data were collected from the first 277 matches played in
the 2001-2002 English Premier League up to and including Saturday, 2 March 2002. At this stage all
teams had played either 27 or 28 matches. With three competition points awarded for a win, one point
for a draw and no points for a loss, the race for the premiership at this stage was very close with only
one point separating the top three teams of Manchester United, Arsenal and Liverpool.

To fit a Poisson distribution to the data while taking into account the home and away aspect discussed
earlier, two models were constructed. The first of these was based on the overall average scoring rate of
teams playing at home. In these 277 matches, there was a total of 387 goals scored by the home team
for an average rate of 1.397 goals per game. At the same time, the away teams scored a total of 331
goals at an average rate of 1.195 goals per game.

The individual team average scoring rates at home (A1) and away (A\2) are shown in Table 2. The
correlation coefficient between home and away scoring averages of 0.556 (p-value 0.025) shows that there
is a reasonable degree of association between the way teams score at home and away, with the majority
as expected having a larger scoring rate for home games. Notable exceptions are Liverpool who had
scored only 16 goals at home in 15 games but 31 goals away in 16 games and Bolton with 11 home goals
but 20 away goals each in 14 games.

Not surprisingly, there is a strong correlation between home scoring average and competition points
(r =0.707, p = 0.002) but an even stronger one between away scoring average and competition points
(r =0.819, p < 0.001). Although further research is required, it seems that a team’s ability when playing
away from home could be the major deciding factor in determining their position on the ladder since
this is their most difficult assignment.

It is interesting to note that if a team plays for a draw in every match then it will be in grave danger
of relegation to a lower Division. The three bottom teams in any Division are relegated to the next
lower Division. This is easily seen from Table 1 where a team who had drawn all their 28 matches at
this stage would be only two competition points above the third bottom team Blackburn.

On the other hand, a team that won all their home games but lost all away games would be on
about 42 competition points or in the top one-third of the table. Another strategy would be to try and
win all home games and be content to draw away games. After 28 matches this would have yielded 56
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Matches Home scoring Away scoring Competition
Team played average \i average A points
Manchester United 28 2.40 2.38 57
Arsenal 28 2.15 1.93 57
Liverpool 29 1.23 1.94 56
Newcastle 28 1.79 1.93 59
Chelsea 27 2.17 1.40 44
Leeds 27 1.54 1.21 44
Aston Villa 28 1.20 1.23 41
Tottenham 27 1.87 0.92 38
Charlton 28 1.27 1.00 37
Fulham 28 1.20 0.69 35
Southampton 28 1.08 1.33 34
Middlesborough 28 1.29 0.64 34
West Ham 28 1.38 0.87 34
Sunderland 28 0.93 0.64 31
Ipswich 27 1.27 1.33 30
Bolton 28 0.79 1.43 30
Everton 27 1.29 0.69 29
Blackburn 27 1.62 0.86 26
Derby 27 0.93 0.62 25
Leicester 28 0.62 0.67 17

Table 2: Individual team average scoring rates at home (A1) and away (\z) after 277 matches in the
English Premier League 2001-2002 season.

competition points or only one point off the lead. Of all teams, Liverpool is the only one not to have
lost any of their fifteen away matches while every other team has lost at least three.

Separate Poisson models for goals scored at home and away goals are shown in Table 3 using the
combined scoring rate for all teams. To avoid distorting the statistical analysis, there is a category of
“4 or more” goals to ensure that each has an expected frequency of at least 5. With a Chi-square value
of 2.73 (p > 0.20) for the home data, the Poisson gives a reasonable fit, although, like the negative
binomial model in Table 2, the larger relative discrepancies occur for a large number of goals scored.

The Poisson model is far less accurate for the away data with a Chi-square value of 10.82 (p < 0.01).
In particular, there are more teams who fail to score any goals than might be expected but the total
number that score one goal or less is not too far away from expectations.

To compare the two distributions, the same data were then modelled using a negative binomial

Home (A = 1.397) Away (A = 1.195)
Goals scored | Observed Expected | Observed Expected
0 70 68.5 99 83.8
1 97 95.7 89 100.2
2 60 66.9 49 59.9
3 29 31.1 24 23.8
4 or more 20 14.8 16 9.3
Total 277 277.0 277 277.0
x? =2.73,p>0.20 x? = 10.82, p < 0.01

Table 3: Observed and expected numbers of goals scored at home and away using a Poisson model.
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Home Away

Goals scored | Observed Expected | Observed Expected
0 70 72.6 100 96.4
1 97 91.9 89 91.6
2 60 63.1 49 52.3
3 29 31.2 24 23.3
4 or more 21 18.2 15 13.4
Total 277 277.0 277 277.0

m = 1.419, s> = 1.592 | m = 1.177, s® = 1.458

x? =1.11, p > 0.50 x2 = 0.63, p > 0.50

Table 4: Observed and expected numbers of goals scored at home and away using negative binomial
distribution models.

distribution with parameters. The results are shown in Table 4.

A comparison of the results in Tables 3 and 4 reveals that the negative binomial distribution does
indeed provide a superior fit for both home and away data. This is especially evident since the Poisson
suggests that there will be far fewer away teams scoring four or more goals than actually happened.
This category alone contributed nearly half of the total Chi-square test statistic value.

4 Scoring combinations

To make a reasonable prediction of the outcome of a match it is of course necessary to estimate the
score of both teams. There are a number of approaches that might be made, but we will consider one
based solely on the Poisson model and another based solely on the negative binomial model.

In the case of fitting a Poisson model, equation (1) will be used along with the combined parameters
for all teams. This means that the probability that the home team will score z goals and the away team
will score y goals is given by:

e MAT e 2N ATAJem atha)

Pr(home goals = z, away goals = y) = T = T ) (3)

where

A1 = the average goals per match for home teams,

A2 = the average goals per match for away teams.

In particular, from equation (3) the probability that a match will end in a scoreless draw (where
r=y=0)is e-(M1tr2),

Using the data in the 277 matches played so far in 2001-2002, the parameter values for all teams
combined are:

A = 1.397,
Ao = 1.195.

The observed and expected frequencies (shown in parentheses) using these parameters and equation (3)
are shown in Table 5.

Although the individual score totals for both home and away are relatively close (as seen in Table 3)
there are significant differences for individual combinations. In particular, there are about nine more
0-0 scorelines but ten fewer 0-1 scorelines than expected. Combined, these could be seen to “cancel
each other out” since they are adjacent. It is interesting to speculate as to why away teams might find it
difficult to score that single goal to break a 0-0 deadlock, while home teams (where observed frequencies
seem to match almost perfectly with expected) do not seem to have that problem.
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Away

Home 0 1 2 3 4 or more Total

0 30 15 15 4 6 70
(20.7) (24.8) (14.8) (4.0) (4.2) (68.5)

1 30 36 17 12 2 97
(29.0) (34.6) (20.7) (8.2) (3.2) (95.7)

2 25 18 8 6 3 60
(20.2) (24.2) (14.4) (5.8) (2.3) (66.9)

3 6 11 9 1 2 29
(9.4) (11.3) (6.7) (2.7) (1.0) (31.1)

4 or more 9 9 0 1 2 21
(4.5) (5.3) (3.3) (3.1) (0.5) (14.8)

Total 100 89 49 24 15 277
(83.8) (100.2) (59.9) (23.8) (9.3) (277)

Table 5: Observed and expected (in parentheses) numbers of times given scores have appeared in 277
matches based on overall Poisson parameter values.

5 Drawn matches

Of the 277 matches in our sample there were a total of 75 (27%) drawn games, a figure that is consistent
with the overall figure of 25% suggested by Haigh [5]. Table 6 shows the actual number of draws for
each score along with the theoretical probability and expected values given by the Poisson distribution
using the overall values of A. The expected frequencies are based on 277 matches. There were no drawn
games higher than 3-3.

Observed Theoretical Expected

Scoreline frequency probability frequency
0-0 30 0.0749 20.7
1-1 36 0.1250 34.6
2-2 8 0.0522 14.4
3-3 1 0.0097 2.7
4-4 or more 0 0.0010 0.3
Total 75 0.2628 72.7

Table 6: Observed and expected numbers of draws in 277 matches using a Poisson model.

Although the observed number of draws (75) matches fairly well the expected number of about 73
draws, the figures in Table 6 reveal a significantly higher number of 0-0 draws than expected. In fact,
10.8% of matches had no goals scored at all while 56% had a total of two or fewer goals at full time.
This aspect has led to some groups calling for techniques to increase the goal scoring such as wider
and/or higher goalposts.

To reward attacking play, the league decided in the early 1980s to award one competition point for
a draw and three points for a win. Previously there were only two points awarded for a win. The idea
was to promote the scoring of goals and make the game more exciting for spectators. The result of this
change was investigated by Croucher [4] who found that there was little evidence of it having the desired
effect, at least in the initial stages of operation. Perhaps this is because if the scores are locked at, say,
0-0 late in a match then both teams will be satisfied with a draw and play defensively rather than risk
their opponents gaining three valuable competition points.
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6 Actual match prediction

Suppose we wanted to predict the result of a particular match using Poisson models. On 6 March 2002,
Southampton at home played Middlesborough. Using the parameters for each team shown in Table 2
(A = 0.93, A2 = 0.64) and equation (3), the figures in Table 7 show the probability of individual
scorelines occurring.

Middlesborough
Southampton 0 1 2 3 4 or more Total
0 0.208 0.133 0.043 0.009 0.002 0.395
1 0.193 0.124 0.040 0.008 0.002 0.367
2 0.090 0.058 0.018 0.004 0.001 0.171
3 0.028 0.018 0.006 0.001 0.000 0.053
4 or more 0.008 0.004 0.001 0.001 0.000 0.014
Total 0.527 0.337 0.108 0.023 0.005 1.000

Table 7: Probabilities of various scorelines when Southampton played Middlesborough.

The most likely result (the one with the highest probability) in Table 7 is a 0-0 scoreline with a 66%
chance that neither team would score more than one goal. The probability of a draw was 0.351, higher
than the overall chance for all matches, with 95% of this figure coming from either a 0-0 or 1-1 final
score.

In fact, Sunderland and Middlesborough played a 1-1 draw which, while not being our first choice,
would not be classified as a surprise result using the probabilities in Table 7.

7 Remarks

It seems by most accounts that the negative binomial distribution yields a better fit of goal scoring
in soccer than does the Poisson distribution, but requires much more data collection and calculation.
For example, to construct a table such as Table 7 using the negative binomial distribution requires the
individual scores of each match played by the two teams involved so that the appropriate values of m
and s? can be calculated to use in the formula.

For the average Pools punter, who most likely does not have the time or ability to use a computer to
assist in undertaking copious calculations, trying to find the most likely candidates for a drawn match, it
would be quite tedious to update this data for every team each week, while the Poisson simply requires
the parameter of the overall scoring rate. It may not be quite as accurate but it is certainly a lot easier
in practice.

The negative binomial distribution could also be used to calculate expected frequencies for every
scoreline as in Table 5 and this could be compared to the values suggested by the Poisson. For example,
a negative binomial distribution using overall data suggests that there would be about 25 scoreless
draws, still below the observed value of 30 but much closer than the 21 suggested by Poisson.

There is also the natural question of independence when dealing with the separate scores of two
teams playing in the same match. Although their scores in practice would not be strictly independent,
for our purposes the assumption seems to have nevertheless yielded useful results.

Another area for further research is to analyse the data separately for teams who are in, say, the top
half of the table and those who are in the bottom half. It may well be that while one group produces
significant results the other does not.
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Abstract

After its introduction to one-day cricket in 1997 the Duckworth/Lewis method has spread to become
the standard rule throughout senior levels of the game for resetting the target in matches shortened
after their start due to rain or other reasons. This paper reviews how the method is working following
its application to around 300 known cases. This includes examining its fairness both practical and
perceived and the consideration of alternatives to the method’s logical way of handling interruptions
within the first innings. A comparison of the Duckworth/Lewis model with several years of data
from international matches is made and some suggestions are examined for improvement of the
model but are shown to be at the expense of loss of simplicity and transparency. Data from actual
matches are used throughout to illustrate concepts and suggestions.

1 Introduction

The Duckworth/Lewis method of target resetting in interrupted one-day cricket matches was presented
to the Third Australian Conference on Mathematics and Computers in Sport [1] and published in the
Journal of the Operational Research Society in 1998 [2]. The method was introduced into the national
one-day competitions of the England and Wales Cricket Board in 1997 and into one-day internationals
(ODIs) on 1 January 1997 in the match between Zimbabwe and England in Harare.

Following slight modifications to the method’s implementation [6] it has gradually spread to be used
in all major one-day cricket-playing countries both domestically and in internationals.

2 Summary of D/L model

The foundation of the method is the Duckworth/Lewis (D/L) model of average runs that are scored
Z(u,w) for the remaining overs available © when w wickets (0 < w < 9) have been lost:

Z(u,w) = ZoF (w)(1 - exp(~bou/F(w)). (1)

In this model, the result of the combination of statistical and mathematical modelling, Zy and by are
positive constants and F'(w) is a positive, decreasing step function with F'(0) = 1. This function is inter-
preted as the proportion of runs that are scored with w wickets lost compared with that with no wickets
lost and, hypothetically, infinitely many overs available. That is, F(w) = limy—e0 Z(u,w)/Z(u,0). Fit-
ting the model to the data includes the estimation of values for by, Zy and F(w). At the time of the
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initial development of the model [1, 2] little of the necessary over-by-over data were readily available from
public sources and so estimation of the F'(w) parameters in (1) came largely from cricket commonsense.

Since u represents overs available to the fraction of one ball it can be regarded as a continuous
variable and the function Z(u,w) differentiable with respect to w. This function has the property that,
when u = 0, 0Z/0u = byZy, a constant independent of w which models the generally sensible cricketing
characteristic that at the final ball of the innings the average runs scored is more or less the same
regardless of the loss of wickets. The graph of the D/L model (1), with the horizontal axis reversed to
reflect the progression of an innings, is given as Figure 1.

250

200 +

150 A

100 A

Average runs obtainable

50 -

O T T T T
50 40 30 20 10 0
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Figure 1: Average runs obtainable for overs available and wickets lost; w = 0 at top, w = 9 at bottom.

3 Summary of D/L method

In order to reset targets, the D/L method converts (1) into proportions of the average total score in 50
overs to produce a table which can be interpreted as the proportion of resources remaining, compared
with those for a full 50-over innings, from any position in an innings:

Plu,w) = ——~. (2)

Although not all one-day matches are of 50 overs per side, these tables, as supplied in Appendix 1
but printed in terms of percentages, can be used for any length of innings up to 50 overs per side.
But there is no restriction to 50 overs. Prior to 1999 some England and Wales Cricket Board (ECB)
competitions consisted of matches up to 60 overs per side for which an extended table was supplied.
Both over-by-over and ball-by-ball versions of the table are supplied to cricketing authorities and are
printed in Duckworth and Lewis [3].

The D/L table is used to calculate each team’s resources available. Denote Ry and R» as the re-
source percentages available for the whole innings, having allowed for any stoppages. The suffixes refer
respectively to Team 1, the side batting first, and Team 2. If Team 1 finished their innings with .S runs
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then the target for Team 2 is derived from

7= 58 it By < By, (32)
Ry
T:S+G50(R2—R1), if Ry > R;. (3b)

The target, which is the minimum total required to win, is the next integer above T'. One less than
this is the score required to tie. When Team 2’s innings is in progress then R» represents the resources
consumed and the equivalent of the tie is called the par score. In (3b), G50 is the average 50-over
first innings total for the standard of cricket in which D/L is being applied. For first-class standard and
international matches this has been 225. The reasons for the different formulas depending on the relative
magnitudes of Ry and R, are explained in Duckworth and Lewis [2, 7] and Lewis and Duckworth [6].

In using the same set of tables for different standards of matches with different values for G59 we
are assuming that the percentages of resources remaining are the same as for ODI competitions which
were the source of the data used to estimate the parameters of (1). If this were not true then we would
need different sets of tables for other levels of competition. We have examined matches in the ECB
domestic competitions and matches between Associate Member countries of the International Cricket
Council (ICC). This has shown that although the G5¢ does indeed vary significantly between standards of
competition, the variations in the resource percentages as calculated by (2) are small enough that the one
set of tables, as Appendix 1, do reasonably represent matches at the different standards. Equations (3),
therefore, can be applied to produce fair targets for most standards of competition. There follow two
examples to illustrate how the D/L method works.

Example 1

On 25 April 1999 in Barbados, Australia scored 252 for the loss of nine wickets in their 50 overs. In
reply, West Indies had scored 138 for the loss of only one wicket in 29 overs when crowd trouble caused
the WI innings to be reduced by ten overs. Upon the resumption the WI target was revised to 196 in
40 overs.

For Australia, who completed their 50-over innings, Ry = 100%. West Indies started with 100%
but at the stoppage, for one wicket lost and 21 overs left, they had, from Appendix 1, 58.6% of their
resources remaining. Upon the resumption, with only 11 overs left, they had 36.1% resources remaining
so the stoppage cost them 22.5% leaving them with Ry = 77.5%. By (3a), with S = 252, T' = 195.30.
They needed 196 runs to win, a further 58 in 11 overs which they achieved with three overs to spare,
winning by eight wickets.

Example 2

In a match of the Carlton United Brewery one-day series on 25 January 2001 at the Adelaide Oval,
West Indies had scored 6/235 in 47 of their 50 overs when rain interrupted play. When play was able to
be resumed the umpires terminated the WI innings and allocated Zimbabwe 47 overs. The D/L target
was an enhancement of the West Indies total to 253 runs.

West Indies commenced their innings expecting (regardless of weather forecasts) their full 50 overs
and 100% resources. Rain deprived them of their last three overs when they had lost six wickets. From
Appendix 1, their lost resources were 10.2% and so for their innings R; = 100 — 10.2 = 89.8%. For their
47-over innings, Zimbabwe’s resources were, from Appendix 1, Ry = 97.4%. From (3b) with G5¢ = 225,
T = 252.1 with the next higher integer being the score required to win, an enhancement of 17 runs.

The enhancement is a logical and fair way of compensating West Indies for the unexpected shortening
of their innings and neutralising Zimbabwe’s advantage of knowing in advance of their shorter innings.
In the match Zimbabwe were all out for 175 runs in 40.2 overs and lost by 77 runs.
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4 Experiences of application

4.1 Reaction

Initial reaction to the introduction of the D/L method in 1997/98 is summarised in Lewis and Duck-
worth [6]. Since that time the method has spread to be used in all major countries [10]. Although many
journalists still enjoy making disparaging comments about the method, there is general acceptance of
its superiority over all other methods that have been tried. Players’ attitudes appear to have been sum-
marised by the Australian captain Steve Waugh ahead of the 1999 World Cup (“It’s the best method
by a long way” [8] and more recently by England captain Nasser Hussain (“I think it is probably the

fairest system ...” [4]). Journalists’ acceptance has been expressed by the method’s initial arch-critic
Martin Johnson of the Daily Telegraph (“The two rain-rule boffins have, by general consent, devised
a fairer system ...” [5]). In countries where the method is long established, revised targets by D/L

rarely raise more than a ripple of passing comment. We believe, therefore, that the method has been
generally accepted although we recognise there are situations which sometimes still cause concern. We
shall discuss one of these in this section. Other issues of concern are addressed later.

4.2 Enhanced targets

In cases of interruptions during Team 1’s innings such as that in Example 2 the enhanced target, whilst
very logical, still causes disquiet not only amongst the supporters of the team batting second but also
in some sections of the media. Whilst the playing regulation that lost overs be shared as equally as
possible between the two teams is in operation, the enhanced target is a logical way of neutralising
the advantage to Team 2 from knowing in advance of the shorter innings after Team 1’s innings has
been unexpectedly shortened after its start. The alternative of reducing Team 2’s wickets would be an
unacceptable change to the nature of the game.

We have suggested to the Cricket Committee (Playing) of the ICC that, rather than enhance the
target, playing regulations could be modified so that the lost overs would be distributed unequally
between the two teams. This would need to be done in such a way that Team 2’s target is one more
than Team 1’s final total as is traditional, but should be obtained in an appropriate number of fewer
overs than that received by Team 1. The mechanism for the division would be such that R, is as close
as possible to R; without exceeding it. In practical terms the closeness would be limited by the need
for each team to have a whole numbers of overs available.

How this might be applied in Example 2 would be to split the six lost overs 1:5. This would allow
for West Indies to bat for two more overs and limit Zimbabwe to 45 overs. Suppose WI finish on 254.
Using Appendix 1, Ry = 100 — 10.2 4+ 7.2 = 97.0% and R> = 95.5% so that, from (3a), T = 250.07
and Zimbabwe would require 251 to win in 45 overs. Any more even split of complete overs between the
teams would provide an enhanced target for Zimbabwe.

The process of finding the appropriate division of lost overs would be iterative and would need to be
performed within the D/L software, CODA [3]. In practice such a division of lost overs would reduce
the chance of a viable match whereby each side needs to have a minimum number of overs available to
bat. This varies from ten to 25 between the various one-day competitions around the world.

5 Analysis of match data

We have already commented on the limited data at the detail required to make accurate estimates of
the parameters of the D/L model (1). Thanks to the Internet, match details are now widely available,
including those from the Cricinfo database [9]. This database provides large amounts of statistical data of
all international matches including the over-by-over scores. Slightly lesser detail is provided on domestic
one-day matches. However, data on ECB domestic matches have been made available to us via The
Press Association (Sports).
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This statistical data can be used in several ways to investigate some issues related to the validity of
the D/L model (1) and the fairness of the D/L method (3).

5.1 Win/Loss ratio in interrupted matches

The main method of target resetting prior to the advent of D/L was based on average run rate for
the overs available [1, 2]. This method favoured the team batting second and so, anecdotally, Team 2
generally won such matches. We claim that our method is fair to both teams. Although a fair result to
a match depends on particular match circumstances, it would nevertheless appear unfair if there were
a long-term bias to either team from the use of D/L. Only the ECB has had sufficient case history in
which to investigate our claim; other countries so far have relatively small numbers of cases partly due
to their use of D/L over fewer seasons and partly due to different climatic conditions compared with
the United Kingdom.

The ECB case history from 1997 to 2001 includes 126 matches that were rain interrupted and were
brought to a conclusion using the D/L method [9]. Of these, 67 were won by Team 1, 56 by Team 2
and there have been three tied matches. Apportioning the ties equally between Team 1 and Team 2
(1% “wins” each) gives a Team 1 win-percentage of approximately 54.4% which is not statistically
significantly different from a 50:50 split, suggesting that there is no evidence to reject our claim of
unbiasedness.

These data are consistent also with the win/loss ratio of 54% to 46% in uninterrupted ECB domestic
one-day matches. Clearly on the basis of these pieces of evidence we can reasonably claim a lack of bias
to either team.

5.2 Analysis of average runs scored for overs available and wickets lost

The graph in Figure 1 shows the D/L model of average runs scored with the overs available and wickets
already lost. The model was developed in 1996 [1] and the tables of Appendix 1 provide the over-by-over
version of resource percentages available that have been used for resetting targets since 1997.

The ODIs from mid-1997 until early 2002, for which over-by-over scores are available on Cricinfo,
have been used to investigate the validity of the D/L model. Some 330 matches have been included
in the analysis. Appendix 2(a) provides the summary of the actual average scores and Appendix 2(b)
provides the numbers of cases on which these averages are based.

Excluding averages based on fewer than five data points, Figures 2(a) to 2(j) provide the comparisons
between the runs expected to be scored from the D/L model (1), represented by the dotted lines, and
the actual averages in Appendix 2(a), the solid lines.

Figure 2(a) shows the average runs obtained for no wickets lost for the overs still available. In
1996 when the parameters in (1) were set, the average 50-over ODI first innings total was around 225,
consistent with the D/L model. There is evidence (see Appendix 2(a)) that the average score in ODIs
is now significantly higher at around 233 (with a standard error of around 3.0). However the shape of
the data line is fairly consistent with the D/L model for most of the data points even though sample
sizes with fewer than 30 overs left are small.

Figure 2(b) is an extremely interesting graph. Whereas the general shape is consistent with the D/L
model, the effect of the loss of the first wicket on average run-scoring capability appears to have been
significantly over-estimated. In practice the early loss of the first wicket does not have a great effect on
average total runs in an innings. Appendix 2(a) shows that close to 50% of ODIs have lost at least one
wicket within the first five overs of a 50-over innings.

Similarly, Figure 2(c) shows an overestimated effect of the loss of two wickets on run-scoring capa-
bility. Both of these graphs have implication for the values of F'(1) and F(2) in (1).

Figures 2(d) to 2(h), for wickets lost from three to seven in what might be termed the middle phase
of an innings, show the D/L model fitting the data quite well.

In Figure 2(i), the graph for eight wickets lost, evidence begins to appear that the model tends to
over-estimate the average further runs scored in the overs available. This suggests that F(8) in (1) is
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Figure 2: Average runs in ODIs for overs left: (a) no wickets lost; (b) one wicket lost; (¢) two wickets
lost; (d) three wickets lost; (e) four wickets lost; (f) five wickets lost; (g) six wickets lost; (h) seven

wickets lost; (i) eight wickets lost; (j) nine wickets lost.
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rather high attributing greater batting skill than is the reality. Figure 2(j), the graph for nine wickets
lost, is based on few data points before the last eight overs available which partly explains the gross
variations from the model. In the last few overs, however, the model is again observably over-estimating
the contribution of the last wicket, on average.

What all this is telling us is that the D/L model is consistent in shape with the data. But there is
evidence to suggest that we may need to adjust slightly the parameters of the formula to update the
effects of various wicket partnerships and perhaps allow for the slightly higher average runs that are
being scored in ODIs. However recent changes to playing conditions that now allow one “bouncer” per
over may prove to have a reducing effect on average totals.

6 Can D/L be improved?

Whereas the D/L method is working well in practice, we are aware of several areas in which improvements
may be possible. These are discussed within this section. A major disadvantage, however, in their possible
implementation is the explicit need to evaluate revised targets using computer software. We believe that
one of the strengths of the D/L method is that it can be implemented entirely by hand, using nothing
more than the tables, as in Appendix 1, and a pocket calculator. This advantage would be lost if
computers became essential and in the process barring the method’s use at the grass-roots levels of the
game at which a computer is unlikely to be available. Nevertheless it is important to outline areas of
potential improvement if cricket authorities believe that the loss of transparency is a price worth paying
for improved performance of the method.

6.1 Above average totals

When Team 1 score a well-above-average total, the D/L par scores for Team 2 as its innings progresses
can seem unreasonably low. This is because the required run-scoring behaviour to achieve high totals
will not normally match the average performance pattern in the D/L model.

Example 3

During the cricket World Cup of 1999, in a certain match whose teams for the moment will remain
anonymous, Team 1 scored a well-above-average 329 in their 50 overs. In reply Team 2 had reached
2/139 in 27 overs, still requiring 191 in 23 overs at a rate of 8.30 per over. Most cricket observers would
likely have concurred that Team 2 were behind their “asking” rate. Nevertheless, according to D/L,
Team 2 were four runs ahead of par and would have won the match had it been abandoned at that
point.

Whereas on average, from Appendix 1, teams score 58.9% of the average total in their remaining
23 overs when they have already lost two wickets, when the total is well above average cricketing sense
suggests that teams need to sustain a scoring rate closer to their final requirement in order to stay on
par. In other words, this cricket sense suggests that the D/L curves in Figure 1 need to be straighter
when chasing large totals.

We can illustrate this point further with an extreme example. Suppose that in a 50-overs-per-side
match, Team 1 hit six runs off every ball. If we ignore the possibility of wides and no balls (which
add runs to the total and provide extra run-scoring opportunities) then, with six balls per over, the
maximum score is 1800. If rain falls between the two innings reducing Team 2 to 25 overs then, from (3a)
and Appendix 1, T = 1800 x 68.7/100 = 1236.6 and they require 1237 to win at the impossible rate of
8.25 runs per ball. Much more logical would be a target of 901 based on half the runs in half the overs.
In this limiting case the D/L curves would need to be entirely linear.

Equation (1) is such that, with the parameters in use, Z(50,0) has the value of approximately 225.
Whilst retaining these values as being consistent with average ODI matches we may introduce two
further parameters, A and n, which provide the ability to shape the graph of average runs scored, as
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in (4):
Z(u,w | A\,n) = ZoF(w)\" (1 — exp(—bou/ A"~ F(w))). (4)

Clearly, for any n, if A = 1 then (4) reduces to (1). Note also that (4) has the property that, when
u=0,07Z/0u = \byZy, again a constant. Note that A (> 1) can be interpreted as a “match factor”
that adjusts the “average” target according to how much Team 1’s score S is above the G5 average.
Using (4), with suitable choice of A\ and n, we can produce graphs that more readily represent the
average further runs that can be scored with overs left and wickets lost, when the final total is much
larger than the overall average for the standard of the competition as represented by G5 in (3b). Figure 3
shows three cases. The lower dotted line refers to the average runs scored from the D/L model (1) with
its 225 runs expected from 50 overs. Note that far more runs are expected when 25 overs are left (when
no wickets have been lost) than are expected in the first 25 of an expected 50 overs. The top solid line
refers to an appropriate scoring pattern when the overall total is an extremely high figure of around 560.
At an average rate of nearly two runs per ball this high scoring rate needs to be sustained throughout
the innings and so the graph of the average runs scored in remaining overs is nearly a straight line.

600

\ ——Upgraded D/L | |
400 = = Standard D/L | |

Runs required

50 40 30 20 10 0
Overs left

Figure 3: Upgraded D/L — a model for realistic distribution of scoring patterns.

To apply this upgraded model to target recalculations we need to produce the equivalent of (2) by
dividing the right hand side of (4) by Z(50,0 | A,n). This produces

F(w)(1 — exp(=bou/A\" L F(w)))

Plu,w]A,n) = 1 — exp(—50by /A1)

()

Experimentation with matches such as that in Example 3 suggests that an appropriate value for n
is 6. Our program CODA finds an appropriate value for A by iteration but it may also be determined
using the Microsoft® Excel tool Goal Seek. In Example 3 the desired value for X is such that Z(50,0 |
A, 6) = 329.0 which turns out to be 1.1178.

The curves relevant to this example appear as the central two curves in Figure 3. The heavy line
represents Z(u,0 | 1.1178,6) as in (4). It shows a straighter curve than the equivalent D/L curve which
is the adjacent dotted line and addresses the concerns of the scenario in Example 3 in that cricket sense
expects more runs from the earlier part of the innings than under standard D/L.
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Using the other parameters in (5) as those used for producing the D/L tables in Appendix 1, revised
tables appropriate for any first innings total S can be produced. Table 1 is an extract of such revised
tables for the S = 329 in Example 3.

329 wickets lost
overs left 0 2 5 7 9
50 100.0 88.9 60.2 34.8 10.1
40 86.5 78.4 56.2 34.2 10.1
30 70.3 652 499 326 10.1
25 61.1 57.2 455 31.2 10.1
23 57.2 53.8 43.5 30.4 10.1
20 51.0 48.3 40.0 29.0 10.1
10 27.8 27.0 244 204 9.6
5 145 143 136 123 7.9

Table 1: Upgraded D/L table for S = 329.

Referring back to Example 3, we see that the par score using Table 1, when Team 2 were 2/139 in
27 overs when chasing 329 is, from (3a), T' = 329 x (100 — 53.8)/100 = 152.00, so that the par score is
152. Under this upgraded model of D/L, Team 2 would have been losing by 13 runs, a situation more
in keeping with cricketing instinct.

In the match being described, Team 1 were previous winners of the World Cup, India, and Team 2
were Kenya who were newcomers to the top tier of recognised one-day countries having qualified from
the minor countries’ one-day competition, the ICC Trophy, in 1997. Naturally D/L makes no distinction
between the quality of individual teams playing in a competition of a given status. The apparent disparity
of the situation of Example 3 is exaggerated by the knowledge of the teams involved and would be
substantially lessened if it were India doing the chasing of 329. (As a matter of interest India, as Team
1, scored 203 in their last 23 overs [9] but this is actually irrelevant to the target resetting process.)
Nevertheless cricketing instinct in such a situation would be assuaged by the use of this upgraded set
of tables.

In the limiting case when Team 1 score 1800 in 50 overs then A = 4.031. The graph for w = 0 in the
upgraded D/L model (4) (equivalent to the top graph in Figure 3) is linear and the resource percentage
for 25 overs left and no wickets lost is 50%, so that the revised target would be 901.

In principle, a different set of tables would be needed for each Team 1 total score up to totals of 400
plus. Such totals have been achieved in several recognised matches between mis-matched one-day sides.

This upgraded D /L procedure would probably have the advantage that if Team 1’s innings has been
interrupted then the mechanism of enhancement could be unified so that (3a) would be required to reset
the target regardless of the relative magnitudes of Ry and Rs.

There is further complexity, however, if Team 1’s innings is interrupted leading to an enhanced
target. The appropriate table to use is not known because Team 1’s final score will not be known until
the completion of their innings following an interruption. The appropriate value for A in (5) would need
to be found retrospectively and iteratively. In practice, the methodology can be included in the software
CODA [3], as used by all major cricket-playing countries. Consequently targets could be obtained
relatively swiftly and accurately but an interested spectator would no longer be able to perform the
target calculations manually since appropriate tables would not be available.

6.2 Maintaining the win probability across a stoppage

In the D/L method the margin of Team 2’s score with respect to par is maintained across a stoppage.
This is totally logical as the target revision takes account only of the run scoring resources which were
lost by the stoppage; the actual runs scored are irrelevant in working out the resource loss and hence
the target revision. The principle that runs already scored do not affect the revised target has applied
in all other target resetting methods that have ever been used [1, 2].
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So long as Team 2 keep abreast of their par score, then a stoppage is unlikely to have a significant
effect on their likelihood of achieving their target. However, if a team are well ahead or well behind par,
the likely outcome may be substantially affected and the remainder of the match after play resumes
may be a non-contest.

For instance, in Example 1, West Indies were 34 runs ahead of the D/L par score of 104 at the
interruption. Their remaining task was to score 115 in 21 overs at under 5.5 runs per over. After the
resumption, the par score is unchanged as is their margin ahead of it but their revised task was one
of scoring 58 in 11 overs with nine wickets still in hand. Although the match was certainly not a non-
contest, West Indies’ task was easier after the interruption because of D/L’s mechanism of maintaining
the margin of advantage across a stoppage.

We have considered a mechanism for adjusting the target resetting process so as to maintain the
probability of each team winning the match across a stoppage. In Duckworth and Lewis [7], we outline
this mechanism and show that although there are seemingly useful ways of overcoming the perceived
problem, there is substantial inequity in such a mechanism. It turns out that an egalitarian philosophy
of taxing the run-rich to aid the run-poor becomes necessary. Also necessary are many special rules
in order to overcome several anomalous situations that could arise in practice. We also show that it is
impossible to maintain the “equal probability” concept in all circumstances. With all the calculations
involved it would only be practical to implement such a concept by means of a computer program.

6.3 Review of D/L parameters

The D/L tables in Appendix 1 have been in use since 1 January 1997 and were devised based on data
available up to mid-1996. Since that time the nature of the one-day game has continued to evolve;
coaches try out different batting and/or bowling strategies, physical fitness of the players is regarded as
more and more important, and there have been several minor changes to the rules of the game.

All of these factors, and the evidence from matches as summarised in Figures 2(a) to 2(j) and
Appendices 2(a) and 2(b), suggest that from time to time the parameters of the model in (1) need to be
reviewed. Such a review is currently in process. Although it is likely that the parameters will not change
substantially nor the consequential resource percentages, nevertheless it is important for the game, and
for the credibility of D/L, to keep abreast of the changing nature of the game.

7 Conclusion

The D/L method is now in use universally at international and national levels having been trialled
over several years. Following a meeting of the Cricket Committee (Playing) of the International Cricket
Council, the method has been adopted as the standard “rain-rule” for the three-year planning period to
August 2004 [10]. The method has also been adopted at many lower levels of the game including grade
cricket in Australia and village cricket in England.

Its track record over around 300 known cases shows that it generally works well. Some scenarios
have seemed strange to several pundits but, upon closer inspection, the targets have been shown to be
generally logical and fair. In few cases have reports suggested that the result of a match was blatantly
unrealistic, unlike results when previous methods were in use.

One of D/L’s strength is its simplicity in operation; interested persons can calculate the target
using nothing more than a pocket calculator and the D/L tables. We know that in this format it is
not perfect and shows its weakness mainly early in replies to well-above-average Team 1 totals. The
methodology is in place, however, to handle all of these weaknesses. They can be implemented by
the cricketing authorities if the extra precision is deemed desirable and this can be done through our
computer software program CODA.

The price for this improved precision is the loss of transparency of the interested spectator. It is for
the various cricket authorities to decide whether this price is worth paying but we are ready to provide
the facility if it is ever wanted.
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target scores in interrupted one-day cricket matches

Table of resource percentages remaining - over by over

Overs left
50 to O
wickets lost
overs left 0 1 2 3 4 5 6 7 8 9 overs left
50 100.0 92.4 83.8 73.8 62.4 49.5 37.6 26.5 16.4 7.6 50
49 99.2 91.8 83.3 735 62.2 49.4 37.6 26.5 16.4 7.6 49
48 98.3 91.1 82.7 73.1 62.0 49.3 37.6 26.5 16.4 7.6 48
47 97.4 90.3 82.2 72.7 61.8 49.2 37.6 26.5 16.4 7.6 47
46 96.5 89.6 81.6 72.3 61.5 49.1 37.5 26.5 16.4 7.6 46
45 95.5 88.8 81.0 71.9 61.3 49.0 375 26.4 16.4 7.6 45
44 94.6 88.0 80.4 715 61.0 48.9 375 26.4 16.4 7.6 44
43 93.6 87.2 79.7 71.0 60.7 48.7 374 26.4 16.4 7.6 43
42 925 86.3 79.0 70.5 60.4 48.6 37.4 26.4 16.4 7.6 42
41 91.4 85.4 78.3 70.0 60.1 48.4 37.3 26.4 16.4 7.6 41
40 90.3 84.5 77.6 69.4 59.8 48.3 37.3 26.4 16.4 7.6 40
39 89.2 83.5 76.8 68.9 59.4 48.1 37.2 26.4 16.4 7.6 39
38 88.0 82.5 76.0 68.3 59.0 47.9 37.1 26.4 16.4 7.6 38
37 86.8 81.5 75.2 67.6 58.6 47.7 37.1 26.4 16.4 7.6 37
36 85.5 80.4 74.3 67.0 58.2 47.5 37.0 26.4 16.4 7.6 36
35 84.2 79.3 73.4 66.3 57.7 47.2 36.9 26.3 16.4 7.6 35
34 82.9 78.1 72.4 65.6 57.2 47.0 36.8 26.3 16.4 7.6 34
33 81.5 76.9 71.4 64.8 56.7 46.7 36.6 26.3 16.4 7.6 33
32 80.1 75.7 70.4 64.0 56.1 46.4 36.5 26.3 16.4 7.6 32
31 78.6 74.4 69.3 63.2 55.5 46.0 36.4 26.2 16.4 7.6 31
30 77.1 73.1 68.2 62.3 54.9 45.7 36.2 26.2 16.4 7.6 30
29 75.5 717 67.0 61.3 54.3 45.3 36.0 26.1 16.4 7.6 29
28 73.9 70.2 65.8 60.4 53.5 44.9 35.8 26.1 16.4 7.6 28
27 72.2 68.8 64.5 59.3 52.8 44.4 35.6 26.0 16.4 7.6 27
26 70.5 67.2 63.2 58.3 52.0 43.9 35.4 25.9 16.4 7.6 26
25 68.7 65.6 61.8 57.1 51.2 43.4 35.1 25.9 16.4 7.6 25
24 66.9 64.0 60.4 55.9 50.3 42.8 34.8 25.8 16.3 7.6 24
23 65.0 62.3 58.9 54.7 49.3 42.2 34.4 25.6 16.3 7.6 23
22 63.0 60.5 57.3 53.4 48.3 41.5 34.1 25.5 16.3 7.6 22
21 61.0 58.6 55.7 52.0 47.2 40.8 33.7 25.3 16.3 7.6 21
20 58.9 56.7 54.0 50.6 46.1 40.0 33.2 25.2 16.3 7.6 20
19 56.8 54.8 52.2 49.0 44.8 39.1 32.7 24.9 16.2 7.6 19
18 54.6 52.7 50.4 47.4 435 38.2 32.1 24.7 16.2 7.6 18
17 52.3 50.6 48.5 45.8 42.2 37.2 315 24.4 16.1 7.6 17
16 49.9 48.4 46.5 44.0 40.7 36.1 30.8 24.1 16.1 7.6 16
15 47.5 46.1 44.4 42.1 39.1 35.0 30.0 23.7 16.0 7.6 15
14 45.0 43.7 42.2 40.2 375 33.7 29.1 23.2 15.8 7.6 14
13 424 41.3 39.9 38.1 35.7 32.3 28.2 22.7 15.7 7.6 13
12 39.7 38.8 37.6 36.0 33.9 30.8 27.1 22.1 15.5 7.6 12
11 36.9 36.1 35.1 33.7 31.9 29.2 25.9 21.4 15.3 7.5 11
10 34.1 33.4 32.5 314 29.8 27.5 24.6 20.6 14.9 7.5 10
9 31.1 30.6 29.8 28.9 27.6 25.6 23.1 19.6 14.5 7.5 9
8 28.1 27.6 27.0 26.3 25.2 23.6 215 18.5 14.0 7.5 8
7 25.0 24.6 24.1 235 22.7 21.4 19.7 17.2 13.4 7.4 7
6 21.7 21.4 21.1 20.6 20.0 19.0 17.7 15.7 12.6 7.2 6
5 18.4 18.2 17.9 17.6 17.1 16.4 15.5 14.0 115 7.0 5
4 14.9 14.8 14.6 14.4 14.1 13.6 13.0 11.9 10.2 6.6 4
3 114 11.3 11.2 11.1 10.9 10.6 10.2 9.6 8.5 6.0 3
2 7.7 7.7 7.6 7.6 75 7.4 7.2 6.9 6.3 4.9 2
1 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.7 35 3.1 1
0 0 0 0 0 0 0 0 0 0 0 0
overs left 0 1 2 3 4 5 6 7 8 9 overs left
wickets lost

© 1997, Frank Duckworth, Stinchcombe, Glos., GL11 6PS, UK, Tony Lewis, Headington, Oxford, OX3 8LX, UK

Table of resource percentages remaining—over by over.
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Appendix 2(a)

Overs Wickets lost w
left u 0 1 2 3 4 5 6 7 8 9
50 233.1

49 232.6  205.1 241.0

48 229.7  210.3  215.3

47 228.1  210.5 190.1

46 226.1 206.9 193.2 145.0

45 225.0 206.7 187.8 143.2

44 221.4 205.0 192.3 126.6 140.0

43 219.2  204.4 189.5 146.0 150.0

42 213.1 205.6 185.9 149.4 149.5

41 209.5 203.8 181.7 152.7 161.0 131.0

40 207.3 198.8 181.6 153.7 157.5 128.0 134.0

39 204.2 197.5 180.0 156.4 156.8 140.5 69.0

38 198.5 196.0 178.4 150.0 150.9 136.5 64.5

37 192.2  190.6 176.6 156.6 143.4 120.3 117.0 8.0

36 188.2 186.2 173.8 157.5 136.2 118.8 108.0 6.0

35 178.6 184.9 166.3 162.2 1374 113.5 104.0 1.0

34 177.0 183.1 164.8 157.2 130.1 117.9 97.0

33 172.9 181.1 161.6 1544 127.4 120.3 106.0 97.0

32 168.6  180.7 156.6 149.4 135.5 109.5 104.5 89.0

31 161.4 178.4 153.8 148.5 130.6 117.5 86.5 90.3

30 166.0 175.7 150.8 146.5 125.5 116.7 85.8 86.0

29 158.4 171.4 150.0 140.8 134.3 108.2 86.0 77.0 75.0

28 154.2 1709 1479 1355 131.0 111.6 82.6 60.6 75.0

27 152.3 165.5 147.5 135.8 126.8 104.2 92.9 58.2 73.0

26 150.6  159.7 1459 131.4 1244 101.7 87.1 56.8 71.0

25 154.3 154.2 143.3 128.8 120.0 98.1 93.7 43.7 71.0

24 150.9  154.5 140.9 125.7 116.3 96.3 91.4 40.9 70.0

23 149.9 1453 136.2 124.3 114.6 93.8 89.5 54.8 63.0

22 147.8 138.3 134.2 119.7 112.9 93.9 88.9 57.4 35.5  62.0

21 140.7 138.3 1285 1174 109.0 89.1 85.6 60.1 40.2  60.0

20 141.3  134.5 125.0 112.4 106.7 91.8 76.9 64.6 39.1  33.0

19 135.3 133.1 123.0 107.2 103.9 89.8 70.1 60.6 31.7  36.0

18 129.0 128.0 118.3 105.0 100.2 87.2 71.1 54.0 35.0 50.5

17 124.0 127.3 112.4 102.9 95.3 83.3 68.7 52.4 35.8  38.7

16 117.3  121.7 109.0 100.5 89.4 82.5 62.7 51.3 33.7  30.2

15 119.0 119.3 104.4 97.1 88.5 7.7 59.8 50.7 34.6  27.6

14 126.0 111.0 102.7 93.6 84.4 73.1 59.0 46.8 33.0 18.8

13 136.0 104.7 99.2 91.2 79.5 2.7 57.2 45.4 30.2  13.7

12 127.0 103.5 95.7 85.2 78.1 69.5 57.3 43.1 32.3  15.7

11 119.0 99.2 90.0 80.1 73.3 66.3 56.8 39.5 30.1 172

10 105.0 94.1 82.4 76.6 69.7 62.3 54.8 42.7 26.6 12.3

9 100.0 90.2 78.3 71.9 63.9 59.1 50.9 38.5 27.1 9.4

84.8 70.4 66.4 61.2 52.9 45.0 40.3 28.2 104

76.4 66.7 58.4 56.1 48.8 42.6 37.0 279 115

70.3 59.8 53.5 49.6 44.8 37.4 32.5 26.2 9.8

55.3 49.3 46.9 42.4 39.8 33.4 28.5 22,7 10.7

45.0 44.5 38.1 35.2 33.1 29.6 24.8 19.0 11.6

32.5 32.5 30.6 29.2 28.0 23.2 19.9 16.3  10.2
21.0 23.3 19.8 20.0 16.1 15.3 13.6 7.3
11.5 12.0 10.5 11.3 10.1 8.7 7.7 5.0

=N WA Oty = 0o

Table of average runs scored in ODI matches for overs left and wickets lost.
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Appendix 2(b)

Overs Wickets lost w

left u 0 1 2 3 4 5 6 7 8 9
50 330

49 290 36 4

48 264 60 6

47 238 78 15

46 209 94 27 1

45 185 104 37 5

44 160 111 53 7 1

43 132 130 54 14 2

42 115 129 66 20 2

41 100 134 70 23 3 2

40 87 129 81 29 4 1 1

39 71 126 91 37 4 2 2

38 62 125 89 45 8 2 2

37 52 120 93 50 13 3 1 1

36 44 118 96 48 22 4 1 1

35 32 112 102 56 22 8 1 1

34 26 106 99 67 25 9 1

33 23 97 101 70 29 10 2 1

32 22 90 101 71 33 12 2 2

31 20 85 95 72 41 15 2 3

30 19 80 92 78 46 14 4 3

29 17 74 88 82 42 24 5 3 1

28 17 64 91 83 45 25 5 5 1

27 16 58 86 84 48 30 8 5 1

26 14 58 79 87 52 28 12 5 1

25 10 54 7 90 56 29 13 7 1

24 9 53 69 94 58 26 19 8 1

23 7 45 70 94 58 34 15 13 1

22 6 40 72 90 58 38 15 15 2 1
21 6 33 65 90 67 38 16 14 5 1
20 4 33 61 94 65 35 21 13 7 2
19 4 28 55 95 66 35 27 16 6 3
18 4 26 52 87 70 39 27 21 5 2
17 4 22 52 82 %6 42 25 23 6 3
16 4 20 48 81 7T 44 29 21 6 5
15 3 17 47 76 71 53 32 23 8 5
14 2 15 37 75 79 57 31 23 10 6
13 1 15 31 70 79 59 33 28 12 7
12 1 10 28 61 88 60 32 30 15 7
11 1 9 26 54 84 67 34 34 16 5
10 1 8 23 44 8 66 37 37 21 6
9 1 6 21 41 78 69 43 39 23 8
8 5 20 38 66 81 48 28 27 14
7 5 17 30 61 79 54 35 25 18
6 3 13 31 56 67 62 40 32 18
5 3 7 32 49 60 66 48 34 16
4 2 6 27 37T 60 64 53 44 15
3 2 4 19 38 45 61 68 47 20
2 4 12 29 44 50 71 49 38
1 2 12 17 39 40 64 61 48

Table of number of ODI cases producing averages in Appendix 2(a).
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Abstract

Substantial improvement in the equity of target resetting in interrupted one-day cricket matches
has been brought about by the now universally adopted Duckworth/Lewis method. Because of one
of its principles, namely that of maintaining the margin of advantage, it can sometimes happen that
what was a difficult task at a stoppage becomes a virtually impossible one upon the resumption.
Conversely, if the batting side were heading comfortably for victory, they may already have won
when playing conditions would have allowed a resumption. In the interests of maintaining an exciting
contest on resumption, we have therefore examined a variation in the method of applying the
D/L method whereby the probability of winning is maintained across a stoppage. In this paper
we describe how such a method might be implemented and how adjustments would be necessary
to avoid anomalous situations. The paper also shows there is considerable inequity in the equal
probability concept and that it cannot be sustained in all situations. As a computer program would
be necessary to perform the calculations, the transparency of the basic Duckworth/Lewis method is
lost. We conclude that a change to an equal probability concept would create more problems than
it would solve.

1 Introduction

Ever since the inception of one-day cricket in the 1960s there has been a need for a method of reset-
ting the target in interrupted matches. The Duckworth/Lewis (D /L) method has recently become the
international standard method and is used in most countries playing cricket under the auspices of the
International Cricket Council. The D/L method is discussed in several papers including Duckworth and
Lewis [4, 5]. These papers also outline the mechanisms of several other target-resetting methods that
have been used in the past.

All of these methods have based the revised target in various ways on the final score obtained by
the team batting first (Team 1). D/L has become accepted as the fairest system around as it yields fair
targets in the vast majority of the varied situations in which stoppages can occur in one-day cricket.
One of its principles is that it maintains the margin of advantage one team may have established at the
time of a stoppage. The effect of this can sometimes be that upon resumption in play a team batting
second (Team 2) which were in a weak position at the stoppage find themselves with an impossible task
on the resumption. Conversely, if Team 2 were in a strong position at a stoppage, upon resumption the
remaining task can be very easy or it may be the case that they have already achieved the revised target
without any resumption.
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Such scenarios, as described below, have prompted some critics to suggest that the target resetting
process should maintain the probability of the win across a stoppage. If this could be achieved then
there would always be a meaningful contest for the shortened innings remaining with some interest left
for spectators who may have braved the inclement weather hoping at some stage for a restart. This
paper discusses the viability of using “probability” to set the target, however this might be defined.

2 The standard D/L procedure

The D/L method of target resetting uses resource percentages of the two teams in order to reset the
target [6]. We have

T:&, ifRQSRl, (la)
R,
T =S+ G5(R: — Ra), if Ry > Ry, (1b)

where S is Team 1’s final total, Ry, R are the resource percentages available to Teams 1 and 2 respec-
tively and G5 is the average first innings total for 50 overs in the standard of competition in which
D/L is being used. The next integer above T is the minimum number of runs needed to win. This is
commonly known as the “target”, and one run below this is the score required to tie.

Resource percentages for the overs remaining and wickets lost are read from the D/L tables, the
over-by-over version of which can be seen in Appendix 1. Some of the examples discussed below need the
ball-by-ball version of the tables for the precision required to obtain the correct target for the matches
concerned. Our booklet [6] contains these tables as used in official matches run under the auspices of
the International Cricket Council (ICC).

As an innings progresses the heavy lines of Figures 1 and 5 represent the required target, under the
two respective scenarios of (1a) and (1b). They also represent the par score for the innings in progress,
which is used as the basis for deciding the winner if a game is abandoned and also a benchmark against
which Team 2’s progress towards achieving their target can be assessed.

Example 1

In an English Norwich Union National League (NUNL) match between Northamptonshire and Somerset
on 30 August 2001, Northants scored 214 in their full allotment of 45 overs. Somerset were 1/155 in 24
overs and four balls of the six balls permitted per over (written as 24.4 overs) when it rained with 20.2
overs remaining. In the event the match was washed out with no further play. Under the D/L method
and from the D/L resource percentage tables [6], in (1a) S = 214, R; = 95.5%, R, = 95.5—57.4 = 38.1%
and T = 85.48. The par score was 85 and so Somerset were declared the winners by their margin of
advantage of 70 runs. But if it had been possible to resume for a further 8.2 overs losing 12 overs of play
then Ry = 38.1 + 28.6 = 66.7 and, from (la), T" = 149.46 so that the revised target would have been
150, which they had already achieved. Consequently it would have had to be announced that Somerset
had already won and no further play would have been necessary. Could an equal probability approach
have provided a fair target for Somerset to chase?

Example 2

In another NUNL match on 12 August 2001, Durham scored 8/269 in their 45 overs. In reply, Derbyshire
had reached 5/134 in 28.5 overs when rain interrupted play and initially 14 overs were lost. At the
stoppage 16.1 overs remained. In (la) with S = 269, R; = 95.5, R> = 95.5 — 36.3 = 59.2% so that
T = 166.75 with a par score of 166. Derbyshire were 32 runs behind par. On a restart for the remaining
2.1 overs they would resume 32 runs behind par and the revised target, with R, = 59.2 4+ 7.9 = 67.1,
T = 189.00, would be 190. Their requirement had changed from the difficult one of making 136 in 16.1
overs to the virtually impossible one of making 56 in 13 balls. In the event just as play was about
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to resume further rain caused the match to be abandoned with no further play possible and Durham
were the victors by 32 runs. But could an equal probability approach have provided a fairer target for
Derbyshire had play resumed?

3 Defining probability

In the two examples, if the scores of the separate Teams 2 at their stoppages were respectively 85 and 166
for the corresponding number of wickets lost, then they would both be level par. This suggests that such
matches would then be evenly balanced representing the probability 0.5 of each team winning in each of
these matches. Case history in the application of the use of D/L is not yet sufficient to test whether the
distribution of winners is reasonably balanced from such situations. Some, as yet unpublished, analysis
of appropriate matches which have not been interrupted, however, is suggesting that such a proposition
is not unreasonable.

Whereas a definition of probability in balanced matches can be determined, defining the probability
of victory when Team 2 are ahead or behind par is a more difficult concept.

Clarke [1] used dynamic programming first in establishing optimum batting strategy for Team 1
to maximise their expected final total and then to determine Team 2’s optimal strategy to maximise
the probability of achieving their target. He suggests that the model could be developed to determine
revised targets in interrupted matches to preserve Team 2’s probability of achieving their target.

Preston and Thomas [8] have developed a methodology of defining probability of victory based on
their dynamic programming model of optimum batting strategy. They go on to illustrate how the target
could be adjusted based on cricketing information that is not readily available in practice.

4 “Probability” based on D/L resources

If “degree of difficulty” is used as a surrogate for probability then the D/L resource percentages can be
used to model the maintenance of the chance of a Team 2 victory across a stoppage. We first consider
the situations in which Ry < R;. Later, we will consider the other situation in which Ry > R;.

Once Team 1’s innings has been completed, S and R; in (la) are constants for the remainder of the
game. Now 7' is a linear function of Rs so that the heavy line in Figure 1 depicts the score that Team 2
need to beat for the resources they have available.

Suppose the target is adjusted so that the remaining tasks before and after the stoppage are in
proportion to the resources remaining before and after. We shall refer to this as our Equal Probability
(EP) approach.

Assume that before a stoppage Team 2’s score to beat was S, and that they had scored Y runs with
the resources consumed X. Let R, denote their total resources available before the stoppage. Denote
Team 2’s resources available, after allowing for the resources lost by the stoppage, by R,. Then the
score to beat after the stoppage S; would be such that

S;-Y R,—X
Sy —Y Ry—-X’

so that R _X
Ra - X @)
b
Figure 1 shows Team 2’s score Y, at a point H, below the par score for the resources they have
consumed, X by the time of the stoppage. The revised score to beat, S}, is where the line from H to the
original target intersects the ordinate at R,. This is the value of the ordinate at G in Figure 1. Point E
would represent the standard D/L target reset according to (1a). The length of the line segment EG
represents the difference in the revised scores to beat between the standard D/L and an EP approach.
The same logic applies if Team 1 are ahead of the par score. A separate diagram illustrating this is
felt not to be necessary although some examples will relate to such a position.

Sy =Y+ (S —-Y)
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Figure 1: Runs/resources plot.
Examples

In Example 1, S, = 214, Y = 155, X = 95.5 — 574 = 38.1%, Ry, = 95.5%, R, = 66.7% so that
S;, = 184.39 and instead of the match being all over without a need for a resumption, the revised target
would be 185, a further 30 in the 8.2 overs. This would still be a relatively easy task for Somerset, but
arguably fairly so given the strength of their position at the stoppage and would provide some interest
for the spectators had play been able to be resumed.

In Example 2, S, = 269, Y = 134, X = 95.5 — 36.3 = 59.2%, R, = 95.5%, R, = 67.1% so that
S; = 163.38 and the revised target would be 164. The remaining task would be the still difficult, but
not now impossible, one of making 30 runs in 13 balls.

These examples illustrate that there could be considerable merit in resetting the target along EP
lines since some entertainment appears to be guaranteed after a stoppage. Since cricket is not just in the
sporting industry but also in the entertainment industry this is a very important consideration provided
equity to teams can be maintained. Unfortunately this is not always the case, as subsequent discussion
will explain.

5 Taxing the rich to aid the poor

In (2), the revised score to beat is clearly a function of the runs that Team 2 have already scored at
the interruption. Since Ry > R,, then (R, — X)/(Ry — X) < 1 and it follows that the better a team
have been performing the greater the task remaining following an interruption; their good performance
is “taxed” in order to make an interesting game at the resumption. On the contrary a team performing
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poorly before a stoppage is subsidised in order to create an entertaining match. This characteristic is
not present in any of the previous methods of target resetting; the adjustment is made entirely on the
overs lost. We consider this egalitarian approach to target resetting as alien to the competitive nature
of cricket. It can also lead to unreasonable inconsistency as Example 3 illustrates.

Example 3

In two matches played on adjacent grounds A and B, Team 1 score 250 in 50 overs on each ground.
Team 2 face 20 overs and have lost three wickets on both grounds when it rains and ten overs are lost at
each match. On ground A, Team 2 had scored 3/120 whereas on ground B they had only scored 3/50.
By the standard D/L method, the target on both grounds would be 221. However, under EP teams are
treated differently because of their comparative performances up to the time of the stoppage. Team 2’s
target on ground A will be 226 whereas the target for Team 2 on ground B will be only 213. Although
such inconsistency would rarely, if ever, become apparent, its existence demonstrates a fundamental
unfairness in the EP concept.

6 Further stoppages

Although the adjustment to the final target using resources appears to offer a more equitable mech-
anism one must consider what would happen if a match suffers further interruptions or subsequent
abandonment.

In Figure 1, the line HG provides the remaining task for Team 2. Suppose that after a few more
overs their subsequent score for the corresponding resources further consumed places them above this
line and then the match has to be abandoned. How should the winner of the match be decided? If we
consider the revised score to beat represented by point G in Figure 1 then Team 2 are ahead of their
revised task. If Team 2 are to be declared the winners on this basis then the target resetting process
under EP is tantamount to starting a new match after the interruption and laying aside any advantage
Team 1 had established at the stoppage. This is clearly unfair to Team 1 in this circumstance and to
Team 2 if, at the stoppage, they were considerably ahead of the par score, represented by point D in
Figure 1.

It is clear, therefore, that the margin of advantage at the stoppage should not be ignored, and yet,
reducing this margin would appear to be an appropriate corollary to maintaining the probability of the
win across the stoppage. Figure 2 suggests a mechanism of how this can be achieved.

7 Adjusting the margin of advantage

At the stoppage, Team 1’s margin of advantage is represented by the line-segment DH in Figure 2. Equal
probability suggests that this margin should be reduced commensurate with the EP revised target. This
could be achieved by resetting the par score on the notional total $* that Team 1 would have scored to
produce the revised target at G using the standard D/L formula (1a). Substituting, in (1a), S; for T,
R, for R> and rearranging provides this notional Team 1 score:

. R
S :R—:sg. (3)

This is represented, in Figure 2, by extending a line OG to intersect the ordinate at Ry. The revised
par score is shown at D', which, from (1a) and (3), has the value

SiX

a

Par score =

(4)

and the line segment D'G represents the revised par-score schedule.
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Figure 2: Runs/resources plot — possible adjusted par score schedule.

At the stoppage in Example 1, the par score, from (1a) with X replacing R», was 85, rounded down
from 85.48. That is, Somerset were 70 runs ahead of par. Under standard D/L, the margin would still
be +70 on the restart, but under EP the revised par score, from (4), would be 105.33. The revised
par-score schedule represented by the equivalent of the line-segment D’G in Figure 2 would then be
used to decide the winners if further rain subsequently abandoned the match.

In Example 2, from (4) with S} = 163.38, X = 59.2% and R, = 67.1%, the revised par score would
be 144 so that Derbyshire, at 5/134, requiring 30 in 13 balls, would be ten below the revised EP par
score instead of 32 below the standard D/L par of 166.

These two examples suggest that (4) appears to offer a compromise between the harshness of standard
D/L to teams well behind par and its generosity to teams well ahead of par in the provision of a
“reasonable” par schedule.

8 Very short resumptions

Suppose that in Example 2, Derbyshire have resumed play wanting those 30 in 13 balls. The first ball
is a no ball (which normally adds one further run to those scored in any other way) and is hit for six,
as is the next ball, which is legitimate. Derbyshire’s score is now 5/147 with two overs left. But before
any more balls are possible, more rain comes down and the match has to be abandoned. Who has won?

Their aggressive, some might say lucky, approach has made their remaining task one of 17 runs in
12 balls. In (4), inputs to the right-hand side remain fixed except for X which, after that one legitimate
ball, becomes 59.7% and the par score is 145 from rounding down the 145.36, so that Derbyshire, now
at 5/147, would have won by two runs.
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Durham might well feel aggrieved at such a result. Prior to the stoppage their position was extremely
strong from a sustained piece of good cricket over the 28.5 overs of Derbyshire’s innings. After the
stoppage, they had just two bad deliveries and events have somehow conspired to deprive them of the
victory that was justly theirs. And this has come about through reducing the margin of advantage that
one team had established.

These cases highlight the issue concerning the par score, which is such a useful concept in standard
D/L. It would be unjust for the margin of advantage before a stoppage to be totally negated. But
by using the line segment HG as the revised par score schedule this is exactly what is being done.
Consequently, in the interests of fairness, the “equal probability” concept needs to make due allowance
for the whole of the margin of advantage established by one team over another. This is important also if
the margin of victory were to be used in round-robin one-day competitions for ranking teams on equal
points [2, 7, 3].

9 Maintaining the difference from par

From discussions so far, it is becoming clear that in order to avoid unfair and anomalous situations
the appropriate mechanism for establishing the revised par score schedule is to maintain the margin of
advantage that either team has established at a stoppage. This is consistent with the current standard
D/L procedure.

In the EP environment, the par score schedule in Figure 2 should be represented by the line DG and
have the equation
Ry — X
R, — X’
where P is the unrounded D/L par score at the stoppage and is calculated through (1) with R, replaced
by X, and where Ro (> X) is the total resource consumed by Team 2 including the play after the
stoppage. Other symbols are as already defined.

By this mechanism, the margin of advantage over the par score is maintained across the stoppage.
In Figure 3, the line segment DG represents the subsequent par score schedule as defined in (5).

For matches described so far the criterion summarised in (5) could overcome the difficulties over the
margin of advantage and yet capture the concept of equal probability. But the issue of egalitarianism in
cricket illustrated in Example 3 is still present and its unfairness can be underlined by revisiting that
example.

Par score = P + (S} — P) X < Rs <R, (5)

Example 3 (continued)

Suppose in this hypothetical example that after the resumptions in the two parallel matches the fortunes
of the two teams batting second are reversed. In ten more overs of play, Team 2 on ground A suffer a
minor collapse and advance their score to 6/160. On the parallel ground B, Team 2 throw caution to the
wind, throw their bats but although losing a few wickets advance their score to 6/155. There are now
ten overs left in the match (after the ten overs stoppage from the first rain interruption). Suppose now
that further rain causes the two matches to be abandoned. According to (5), the par score on ground A
will be 161 and on ground B it will be 154. Although at the end of 30 overs of play the two teams have
consumed exactly the same resources, Team 2 on ground A with the higher total would lose whereas
Team 2 on ground B with the lower total would win! Again such an anomaly would be unlikely to be
manifest in public, but it is there nevertheless and illustrates again the fundamental unfairness of the
EP approach.

10 Long stoppage with short resumption

In Example 2, the requirement to maintain the margin of advantage yields an anomalous situation. The
D/L par score at the stoppage was 166 yet the EP revised target would be 163.38, which is rounded up
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Figure 3: Runs/resources plot — EP revised par score schedule.

to 164 with 163 required to tie. As Derbyshire’s innings would have progressed, the par score would not
have risen as is normal with the consumption of resources, but would decline!

Figure 4 illustrates such a scenario depicted by the line-segment DG, the equivalent to that in
Figure 3. The absurdity of this would be manifested in Example 2 if Derbyshire just blocked out the
last 13 balls without making any attempt to score any runs. Their margin of defeat would decline from
the 32 runs that they were behind par at the stoppage to a margin of 29 runs.

In order to eliminate such inconsistency, it would be necessary to constrain the par score in such
situations so that the par score can never drop below the target. This means that the revised score to beat
for any further interruptions would not change to allow for the further loss of resources. Consequently,
the equal probability principle through D/L resources could not be sustained in resetting the target in
these types of circumstances.

11 Stoppages to Team 1’s innings

So far discussion has concentrated on the simpler case of stoppages reducing the duration of only
Team 2’s innings. A major strength of the standard D/L method is that, unlike earlier methods of target
adjustment, it allows in a fair and logical way for the disadvantage that Team 1 usually suffer when
their innings is unexpectedly shortened after it has started or is prematurely terminated. The measure
of disadvantage to Team 1 is modelled in D/L by the excess resource that Team 2 subsequently enjoy
over Team 1. Rather than adjusting targets in the same way as (1a), D/L recognises the implications of
a possibly unrealistic assumption of extrapolation of performance per unit of resource. Instead “average
performance” is used as the model of expected further runs with the excess run-scoring resources.
Equation (1b) summarises the application in target resetting in this circumstance through use of Gy,
the average score in 50 overs for the relevant standard of cricket.
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Example 4

In a hypothetical one-day international (ODI), Team 1 score 4/196 in 40 of their 50 overs. Rain causes
their innings to be terminated and Team 2 are given 36 overs. They reach 4/119 in 23 overs when more
rain shortens their innings by a further five overs to 31. Following the restart, they have reached 6/166
after 27 of their 31 overs when yet more rain causes the match to be abandoned. Which team have won
the match?

At the termination of Team 1’s innings, ten overs remained and four wickets were down. Thus
resources remaining from the D/L table are 29.8%. These were lost, so that the resources available to
Team 1 were 100 — 29.8 = 70.2% and so R; = 70.2%. Team 2 are given 36 overs; so Ry = 85.5%.
From (1b) with G50 = 225, the current ODI standard, 7' = 230.43 so that Team 1 are compensated
for the premature termination of their innings and Team 2’s advantage of knowing in advance of the
shorter innings is neutralised by the provision of the enhanced target of 231 in 36 overs (230 to tie).

At the stoppage during Team 2’s innings, standard D/L has X = 85.5—35.7 = 49.8% and from (1a),
T = 139.04. Team 2 are 20 runs behind par and would lose by this amount if the match were abandoned
(assuming 23 overs in an innings constituted a viable match). However, after a stoppage deducts five
overs there are only eight more overs to play. From (1b), standard D/L provides the revised target of
T = 206.8 using R» = 85.5 — 35.7+ 25.2 = 75.0% with the other inputs unchanged. Team 2 are still 20
runs behind the par score and have the difficult task of scoring a further 88 runs in eight overs to win.

The procedure for calculating the target under EP is depicted in Figure 5. In principle it is the same
as that finalised for when R, < R;. In this example, S, = 230.43, Y = 119, X = 85.5 — 35.7 = 49.8%,
Ry = 85.5%, R, = 75.0% so that S; = 197.66 and the revised target would be 198, a further 79 in
the eight overs. This would be a slightly easier and a more achievable task than the 88 required under
standard D/L.

However, even further anomalous scenarios are possible because of the “kink”, at K in Figure 5, in
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Figure 5: Team 1 interruption — run/resources plot.

the standard D/L par score curve which arises from the modelling of D/L.

Suppose, in this example, Team 2, have scarcely begun their reply and there is an interruption
resulting in a loss of R, — R, resources. Figure 6 represents this scenario with Team 2’s score again
represented by the point H after the small resource consumption X but somewhat exaggerated for
clarity. Because of the lack of proportionality in the D/L target calculation for such scenarios with
R> > Ry, the revised D/L target would be significantly different to that obtained via EP. This would
seem unsatisfactory because there would be a negligible difference in cricketing terms but the different
rules required for EP after a stoppage would yield a significantly different revised target.

In truth, if D/L set the target always using (1a) regardless of the relative magnitudes of Ry and Ry,
then this anomaly would not exist. But the reasons for the existence of the D/L “kink”, already outlined,
would require an EP approach to make due allowance for it. One “solution” to this anomalous situation
would be to reduce the target along standard D/L lines for the loss of resource down from Ry, to the value
of the abscissa at K. Resource lost in excess of this could then be allowed for using EP principles already
outlined. But if this were included in the methodology it would be another situation where the rationale
of the EP approach could not be applied. It must therefore be concluded that EP is incompatible with
Ry > R,.

12 A nonlinear model of maintaining probability

The way we have suggested of establishing equal probability targets is by scaling down the runs required
for a tied match by the ratio of the resources remaining after and before the stoppage as in (2). This
would assume, of course, that the probability of achieving these runs is directly proportional to the
resources in hand.

But in reality this assumption breaks down when the task before the stoppage is either very difficult
or very easy, its failure being most manifest when an innings is resumed for a very short period. For
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Figure 6: Early stoppage following Team 1 interruption.

instance, to score 400 in a 50-over innings is so big a requirement as to be a very rare event, yet
the required rate of 4 runs per percentage resource (a 50-over innings constituting 100% resource, by
definition) could quite possibly be achieved if only one over (about 4%) remained after the stoppage,
16 runs being needed.

Conversely, a virtual certainty of winning could become a by-no-means-certain task; for instance
if just 50 runs were required from 50% resource (e.g. 24 overs to go with only four wickets down), a
resumption for one over would still leave the team with the demanding task of making four runs (five
to win).

To avoid such distortions, any realistic consideration of an equal probability approach would have to
be based on the assumption that an additional regulation would be introduced setting a minimum length
of play, say one or perhaps two overs, for a resumption to be permitted. However, in some circumstances
such a regulation could prevent an exciting finish to a balanced match, which would be contrary to the
very purpose for which the equal probability option would have been chosen.

A way of circumventing the problem would be to use a more realistic mathematical model of the
way the number of runs obtainable with equal probability varies with resources available. This would
add even further complexity to the operation of the method.

13 Summary

There are significant advantages to adopting an EP approach to target resetting but there are also
significant disadvantages. These can be summarised as follows.
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Advantages

1. No matter how far Team 2 may be ahead of par, the revised target will always be higher than
the runs already scored, so the likelihood is much reduced of a situation where the rain stops and
play is again possible but it is found that the revised target has already been achieved.

2. No matter how far Team 2 may be behind par, their task is unlikely to become totally impossible
on resumption.

Disadvantages

1. Instead of one procedure, as in the standard D/L method, several different procedures would be
necessary to calculate the revised targets. Standard D/L would still be applicable for any target
revision that may be necessary before Team 2 start their innings and for a termination of Team 2’s
innings without previous interruptions within Team 2’s innings. But for subsequent interruptions
within Team 2’s innings a different procedure would usually be required. Furthermore, after such
an interruption, another procedure would be required to determine the par score schedule. And
an even further procedure would be required to ensure that the EP target was never lower than
the par score (+1) at the stoppage. Thus the unified standard D/L system, which was relatively
easy to explain and operate manually, would be replaced by four different procedures.

2. This additional complexity would mean that EP could only be operated in practice by computer
and the transparency would be lost. It would be possible to write revised regulations explaining how
the calculations could be done by hand/calculator, but these would not be easily comprehensible
by scorers, match officials or the general public.

3. EP means that a team’s target is higher the more runs it has scored and lower the less it has
scored. Subsequently the outcome of a match may be determined by the way Team 2’s performance
varied throughout its innings. This could well lead to anomalies and to basic unfairness.

4. If play could resume only for a very short period, then Team 1 could be presented with a chance
of winning that was not a realistic possibility before the interruption; conversely a very difficult
target could become a possibility, e.g. six off one ball. To reduce such distortion, it would be
necessary either to introduce a regulation that play could only resume for a minimum of, say, two
overs (and such a “minimum overs” rule could easily backfire denying the possibility of a result
in a close match) or to use a more complex model for maintaining the win-probability across the
stoppage.

5. EP is incompatible with situations where Team 2’s resources exceed those of Team 1. It would
therefore be necessary to change the current playing regulations whereby lost overs during Team 1’s
innings are divided equally between the two sides, thus reducing the probability of completion of
a viable match, especially where further interruptions in play are liable to occur.

6. For matches resuming with few overs left, the margin of victory, which could be used for ranking
purposes, would be unfairly affected under EP, resulting in unfair margins.

14 Conclusion

The equal probability option would usually ensure that there is a meaningful game after a resumption
of play. However, it has many disadvantages, in particular its basic unfairness to teams doing well and
the additional complexity of operation and consequent loss of transparency. The problems created by
the equal probability approach seem to be greater than the problems it solves.



Appendix 1

The probability of winning a one-day cricket match across a stoppage

Overs left
50 to O
wickets lost
overs left 0 1 2 3 4 5 6 7 8 9 overs left
50 100.0 92.4 83.8 73.8 62.4 49.5 37.6 26.5 16.4 7.6 50
49 99.2 91.8 83.3 73.5 62.2 49.4 37.6 26.5 16.4 7.6 49
48 98.3 91.1 82.7 73.1 62.0 49.3 37.6 26.5 16.4 7.6 48
47 97.4 90.3 82.2 72.7 61.8 49.2 37.6 26.5 16.4 7.6 47
46 96.5 89.6 81.6 72.3 615 49.1 375 26.5 16.4 7.6 46
45 95.5 88.8 81.0 71.9 61.3 49.0 375 26.4 16.4 7.6 45
44 94.6 88.0 80.4 71.5 61.0 48.9 375 26.4 16.4 7.6 44
43 93.6 87.2 79.7 71.0 60.7 48.7 374 26.4 16.4 7.6 43
42 92.5 86.3 79.0 70.5 60.4 48.6 374 26.4 16.4 7.6 42
41 91.4 85.4 78.3 70.0 60.1 48.4 37.3 26.4 16.4 7.6 41
40 90.3 84.5 77.6 69.4 59.8 48.3 37.3 26.4 16.4 7.6 40
39 89.2 83.5 76.8 68.9 59.4 48.1 37.2 26.4 16.4 7.6 39
38 88.0 82.5 76.0 68.3 59.0 47.9 37.1 26.4 16.4 7.6 38
37 86.8 815 75.2 67.6 58.6 47.7 37.1 26.4 16.4 7.6 37
36 85.5 80.4 74.3 67.0 58.2 475 37.0 26.4 16.4 7.6 36
35 84.2 79.3 73.4 66.3 57.7 47.2 36.9 26.3 16.4 7.6 35
34 82.9 78.1 72.4 65.6 57.2 47.0 36.8 26.3 16.4 7.6 34
33 81.5 76.9 71.4 64.8 56.7 46.7 36.6 26.3 16.4 7.6 33
32 80.1 75.7 70.4 64.0 56.1 46.4 36.5 26.3 16.4 7.6 32
31 78.6 74.4 69.3 63.2 55.5 46.0 36.4 26.2 16.4 7.6 31
30 77.1 73.1 68.2 62.3 54.9 45.7 36.2 26.2 16.4 7.6 30
29 75.5 717 67.0 61.3 54.3 45.3 36.0 26.1 16.4 7.6 29
28 73.9 70.2 65.8 60.4 53.5 44.9 35.8 26.1 16.4 7.6 28
27 72.2 68.8 64.5 59.3 52.8 44.4 35.6 26.0 16.4 7.6 27
26 70.5 67.2 63.2 58.3 52.0 43.9 35.4 25.9 16.4 7.6 26
25 68.7 65.6 61.8 57.1 51.2 43.4 35.1 25.9 16.4 7.6 25
24 66.9 64.0 60.4 55.9 50.3 42.8 34.8 25.8 16.3 7.6 24
23 65.0 62.3 58.9 54.7 49.3 42.2 34.4 25.6 16.3 7.6 23
22 63.0 60.5 57.3 53.4 48.3 415 34.1 25.5 16.3 7.6 22
21 61.0 58.6 55.7 52.0 47.2 40.8 33.7 25.3 16.3 7.6 21
20 58.9 56.7 54.0 50.6 46.1 40.0 33.2 25.2 16.3 7.6 20
19 56.8 54.8 52.2 49.0 44.8 39.1 327 24.9 16.2 7.6 19
18 54.6 52.7 50.4 47.4 43.5 38.2 32.1 24.7 16.2 7.6 18
17 52.3 50.6 48.5 45.8 42.2 37.2 315 24.4 16.1 7.6 17
16 49.9 48.4 46.5 44.0 40.7 36.1 30.8 24.1 16.1 7.6 16
15 475 46.1 44.4 42.1 39.1 35.0 30.0 23.7 16.0 7.6 15
14 45.0 437 42.2 40.2 375 33.7 29.1 23.2 15.8 7.6 14
13 42.4 41.3 39.9 38.1 35.7 32.3 28.2 22.7 15.7 7.6 13
12 39.7 38.8 37.6 36.0 33.9 30.8 27.1 22.1 15.5 7.6 12
11 36.9 36.1 35.1 33.7 319 29.2 25.9 21.4 15.3 7.5 11
10 34.1 33.4 32.5 314 29.8 27.5 24.6 20.6 14.9 7.5 10
9 31.1 30.6 29.8 28.9 27.6 25.6 23.1 19.6 14.5 7.5 9
8 28.1 27.6 27.0 26.3 25.2 23.6 215 18.5 14.0 7.5 8
7 25.0 24.6 24.1 235 22.7 214 19.7 17.2 13.4 7.4 7
6 21.7 214 21.1 20.6 20.0 19.0 17.7 15.7 12.6 7.2 6
5 18.4 18.2 17.9 17.6 17.1 16.4 15.5 14.0 11.5 7.0 5
4 14.9 14.8 14.6 14.4 14.1 13.6 13.0 11.9 10.2 6.6 4
3 114 11.3 11.2 11.1 10.9 10.6 10.2 9.6 8.5 6.0 3
2 7.7 7.7 7.6 7.6 7.5 7.4 7.2 6.9 6.3 4.9 2
1 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.7 35 3.1 1
0 0 0 0 0 0 0 0 0 0 0 0
overs left 0 1 2 4 5 6 7 8 9 overs left
wickets lost

© 1997, Frank Duckworth, Stinchcombe, Glos., GL11 6PS, UK, Tony Lewis, Headington, Oxford, OX3 8LX, UK

Table of resource percentages remaining—over by over.
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Abstract

A model is developed here for computation of the effects of power allocation strategies during the
400 metre track event. The model incorporates four mechanisms for consumption of energy: (i)
speed/acceleration, (ii) heat generation in the body, (iii) air drag, and (iv) resistance to centrifugal
effects in the curved portions of the track. This consumption is balanced in the model by aerobic
and anaerobic energy supplies to the muscles. Considered in the anaerobic system are effects of the
three important processes: (i) ATP cleavage, (ii) phosphocreatine cleavage (the phosphagen system),
and (iii) glycolysis (the lactic acid system). Certain parameters in the model are estimated using
averaged data from the 50 metre time splits of the eight finalists in each of the men’s and women’s
400 metre final in the 1999 Seville World Championships. The model is then tested against 50 metre
time splits of Michael Johnson and Cathy Freeman. There is a good match with actual data. Using
the developed model, variations to running strategies are then investigated. The model verifies the
common wisdom that running at maximum available power for the entire race is a poor choice. Too
much energy is wasted on increased heat, drag, and centrifugal effects. The model computes faster
times for actual strategies commonly used by world-class runners. Alternative variations in strategy
are then tested which clearly indicate possible improvements in race times.

1 Introduction

The task of accurately modelling the 400 metre track event is interesting. Unlike the case for the 100 m
and 200m events, runners in the 400 m do not exert maximum available power throughout, but use a
strategy of conserving power in order to be able to maintain a reasonably high speed for as long as
possible. In this paper, a model is developed which enables any power allocation strategy to be tested
against available data. It is shown that running at maximum power throughout is a poor strategy. In
particular the model tests the effects of accelerating for a short time at maximum power and then
maintaining a lower than expected constant speed for the middle section of the race. It is demonstrated
that world-class runners use strategies which can be approximated by such a constant speed phase and
that potential improvements in race times are predicted by optimising the strategy.

The early models of running were based upon a force formulation using Newton’s Law. The early work
inspired by the biologist Hill [4] was developed by Keller [8, 9] who developed an analysis using optimal
control. An excellent commentary on Keller’s method is given by Pritchard [12]. One of the problems in
Keller’s approach is the assumption of a simple form for the athlete’s energy profile. Keller’s approach
has been extended and applied more recently by Woodside [18], Tibshirani [13] and Murieka [11].

Ward-Smith [14, 15, 16] has developed an alternative energy/power formulation of a mathematical
model for running. He includes developing physiological theories of energy supply and usage by athletes.
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There are some crucial advantages in this approach. Current understandings on anaerobic and aerobic
energy supplies to the muscles can be immediately incorporated into the model. Also, the effects of
fatigue are an intrinsic component of the model, enabling more realistic matches with time-split data
for sprint events.

In this paper a modification of the energy/power formulation of Ward-Smith is to be used. It is found
that such an approach can be adapted to the difficult task of modelling curvature-induced retardation
effects for accelerating motion on a curve. It is demonstrated that such curvature effects are important
for the 400 m event where the runner initially accelerates on the curve and in fact runs less than half
the total distance on the straights.

For their energy/power model, Ward-Smith and Radford [17], and Ward-Smith [16] have developed
and refined values of relevant physical constants and parameters associated with sprinting the 100 m
under maximum power. Most of these constants and parameters are also relevant to the 400 m event.
However there are certain differences. In order to estimate variations in their values, 50 m time-split data
are to be used from the 400m finals of the 1999 Seville World Championships (see Ferro et al. [3]). In
each of the men’s and women’s final, averaged data is used from all eight competitors. A more detailed
examination is then made of individual data for the respective winners, Michael Johnson (world record)
and Cathy Freeman.

Ward-Smith [16] tested a strategy for inserting a constant-speed phase into the 100 m sprint model.
It was found that there was nothing to be gained and that running at maximum available power was
optimal for this event. In this paper, it is shown that insertion of a constant speed phase not only
approximates the well-known strategy used by world-class athletes in the 400 m, but also reduces times
significantly from those expected for maximum available power exertion. Optimising the constant speed
phase indicates potential time improvements for Johnson and Freeman.

2 Energy and power formulation

Following Ward-Smith [14, 15, 16], chemical energy from the muscles is transformed into two main
forms, heat and external work. Chemical energy C' at the muscles is produced by fairly well understood
anaerobic and aerobic mechanisms, and is transformed into heat production H in the body and external
work W done on the centre of mass of the runner. In this paper, all terms used will be assumed to be
normalised per kilogram of body mass of the runner and all quantities will be measured in excess of the
body’s resting metabolic rate. Conservation of energy/power then gives the basic power equation

dC _dH dW
a~ar T ar
where ¢ is the running time from the start.

Some assumptions are required. External work is done in providing kinetic energy to the centre of
mass. It is also done against air drag. It will be assumed here that there is no appreciable wind. Raising
the runner’s centre of mass from the starting position is a factor, but is ignored here. It is generally
acknowledged that vertically upward losses of kinetic energy during a stride are recovered during the
downwards phase. Hence, it is to be assumed that vertical motion of the centre of mass during a typical
stride can be ignored. The work done in retarding centrifugal effects due to curvature is postponed until
the next section. So, for the moment, straight line motion is assumed.

If v represents the runner’s horizontal speed, kinetic energy (per kilogram) is %vz and the force
acting due to air drag is D = pCpSv? where p is air density, Cp is the drag coefficient for a runner,

2
and S is the effective frontal area of the runner. Hence,

aw
dt

(1)

= drag power + kinetic power
d
= Dv + —0.50
v+ 7 v

dv
= Kv3 - 2
v+vdt, ()
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where K = pSCp/2m, m the runner’s mass.
The rate of transfer of mechanical energy into body heat is well modelled by

dH
A
= v, 3)

where A is a constant, see Ward-Smith [14]. If we represent the power contributions from anaerobic and
aerobic energy sources as dCyy/dt and dCy.,/dt, respectively, equation (1) becomes

dCan | dCoer 3 dv
o 5 = Av + Kv +va, (4)

where A is the heat parameter and K is the drag parameter.
It remains to specify the aerobic and anaerobic energy supply mechanisms. It is well known that the
rate of aerobic energy release, the power P,.,, is modelled by the equation

Poer(t) = % =R(1—e™ M), (5)
t

where R is the limiting aerobic power and ) is a parameter determining the rate of aerobic energy release,
see Ward-Smith [14, 16]. The form of equation (5) indicates that the aerobic energy supply is low in the
early stages of exercise and builds up towards the maximum R as time progresses. The principal energy
source in the early stages is anaerobic and is provided in the muscles by three fundamental mechanisms:
(i) the rapid utilisation of adenosine triphosphate (ATP), (ii) phosphocreatine cleavage (the phosphagen
system), and (iii) glycolysis (the lactic acid system). Ward-Smith [15, 16] has successfully modelled each
of these mechanisms with the product of exponential functions which represent the rates of rise and
decline of each of the energy supply processes. In fact, the power equations determined by Ward-Smith
are

(14rn)/rn
147,
+—) (1 = e=¥nt)ernt, (6)

T'n

Palt) = Prsdartl™

where the subscript n refers to each of the three anaerobic mechanisms, with n = 1 for the ATP system,
with n = 2 for the phosphagen system, and with n = 3 for the glycolysis system. In (6), P, (t) is the
corresponding available power at time ¢ and (Pmax)» 18 the maximum attainable power by mechanism n.
The parameters v, and \,, determine each power growth and decline rates respectively and r,, is defined

by
o=
Hence the total anaerobic power P,,, is given by
Pan(t) = P1(t) + Pa(t) + P3(t), (7)
and the total available power P(t) is given by
dcan dCaer —
P(t) = Pan(t) + Pacr(t) = — S = Pit) + Po(t) + Pa(t) + B(1— ™), )

where Py, P, and P; are given by equation (6).

Figure 1 shows a typical representation of the three anaerobic power mechanisms and the somewhat
slower aerobic power supply for the duration of the men’s 400 metre event. Note that the initial ATP
supply is largely depleted within the first two or three seconds and in fact all three anaerobic mechanisms
have peaked within ten seconds. The total power available to the runner is also displayed.

Combining equations (4) and (8) results in the following nonlinear differential equation in v:

d
Pan(t) + Paer(t) = Av + Kv® + vd—:. 9)
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Figure 1: Typical available power in the men’s 400 m event.

This equation forms the basis of the model and can be solved numerically using an initial value solver
such as a Runge—Kutta scheme.

It should also be noted that the amount of aerobic energy used in time t can easily be found by
integrating equation (5) to get

Cper = Rt — %(1 —e M), (10)

and, similarly, by integrating equation (6) the amount of anaerobic energy used in time ¢ is

Can: Z (Can)n,
n=1,2,3
where

(14ra)/rn R
_ 1/rn 1+Tn 1/)71, =X ¢n+>\n(1 e )>
(Canln = Prax)nr ( rn > (An(Anwn) e MOwton ) Y

3 Track curvature effects

The Seville 1999 World Championship 400 m track consisted of two 80 m straights and two semicircular
sections with the inside track circumference being 120 m. Eight lanes of approximate width 1.3m are
used. The inside lane runner starts and ends at the end of the straight, with the other seven runners
starting at set positions around the semicircle such that they all finish at the end of the straight after
running exactly 400 m. For example the runner in lane 8 starts from about 57m ahead around the
semicircle. The TAAF standard for an outdoor stadium does allow some variations to this layout and
so not all 400 m tracks are exactly to this specification. For the purposes of this paper, the Seville track
measures are to be used.

When running on a curve, there is a resulting centrifugal effect which must be counteracted in or-
der to maintain motion along the curve. Obviously runners on the inside lanes are more affected. This
phenomenon has been studied by Greene [5], whose model has been applied to baserunning models in
softball and baseball by Harman [6], and also applied to specific case studies of 200m and 400 m results
data, Harman [7]. Greene’s model takes account of the runner’s speed (assumed constant), foot contact
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time, stride length, stride time, and ballistic air time. The model predicts the retarding effect on speed,
of running at various constant speeds, on circles of defined radii. The results are supported by exper-
imental data. More complex models have subsequently been formulated, see for example Behncke [1]
and Mureika [11], but with some difficulty and uncertainty about parameter values. In fact, Behncke
commented that “the simplicity of Greene’s result and the apparent ease of its derivation make it ...
an ideal candidate for the analysis of the track and field situation.”

Greene found that a runner, with constant straight line speed vg, has that speed reduced to v on a
circular curve of radius 7, where v can be determined as the solution of the polynomial equation

v+ (7"g)2v2 — (rgvg)2 =0, (12)

where g is the acceleration due to gravity.

There is a problem in applying Greene’s speed modification formula since it assumes constant speed.
During the initial stages of the 400m event, the runner accelerates rapidly from rest while on the
curve. Hence an additional formulation is needed which allows Greene’s modification to be applied to
accelerating motion. An innovation here is to formulate the curvature retardation effect in terms of the
power required to overcome the centrifugal effect. It will then be seen that this will enable Greene’s
formula, given by equation (12), to be used during accelerating motion.

Denote by P.e,(v) the additional power (per kilogram) required to overcome centrifugal effects when
running on a curve of radius r at speed v. Combining with heat, drag, and kinetic effects, and equating
to the available power supply, equation (9) must then be modified to

d
Pun(t) + Paer(t) = Av + Kv® + vd—: + Pren. (13)

Without the curve, and using the same power supply, the runner’s speed would be vy and so the power
equation is just equation (9), in this case

d
Pun(t) + Paer(t) = Avo + Kvg + UO%, (14)
where, from equation (12) it follows that
06
Vo W 2 (15)
From equations (13) and (14), it follows that
dvg dv
Peen, = A(vo — K(vd —? — —U—. 1
(vo —v) + K(vg —v°) + v Tl (16)
Differentiating equation (15),
dvo  rg(3v* +1r%g?) dv (17)

dt [o* + 12g2 dt’

Equation (16), after some simplification, becomes

P.., = Av (\/w +1- 1) + Kv? (\/(w +1)3 — 1) + v%(i’)w), (18)

where .
v

w = g (19)
and P.., is measured in watts per kilogram. Substituting back into equation (13) and simplifying, gives
the power balance equation

Pon(t) 4 Paer(t) = Avv/1 +w + Kv* /(1 + w)? + v% (1+ 3w), (20)
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where w is zero on the straight and is given by equation (19) on the curve. This is a very general
power balance equation applying to any running situation on an arbitrary curve or straight line. The
actual outcomes of the retarding effect of curvature in the 400 m event are quite significant and will be
discussed in the concluding section.

4 The model

Equation (20) can be rewritten as

% - ngw) (P,m + Poer — Avo/T+w — Ko /(1 + w)3) , (21)
where w = v*/(rg)?. Using appropriate values of the parameters and constants (normalised per kilo-
gram), this was then solved for v, z at times up to x(t) = 400 using a fourth order Runge-Kutta
scheme with step size At = 0.0025. The initial conditions are: (i) to = t,, the runner’s reaction time
in seconds, (ii) vop = 0.00001ms~!, to bypass the singular value at v = 0, and (iii) 2o = —0.17 metres,
the average position in metres of a runner’s centre of mass at the start, see Ward-Smith [16]. Such a
solution represents motion under maximum available power supplied by Py, and P,,,.

As mentioned in the Introduction, Ward-Smith [16] tested a strategy for inserting a lower constant-
speed phase into the 100m sprint model and found that there was nothing to be gained. Running
at maximum available power is optimal for this event. However, for the 400m event things are very
different. Curvature effects are significant and increase with speed. In addition, as Figure 1 illustrates,
the anaerobic power supplies are well in decline after ten seconds with the aerobic supply becoming
more prominent.

The strategy to be used in this model is to accelerate at maximum available power until a chosen
speed v, is reached at time ¢;. The athlete then continues at this constant speed until time t,, the point
where the total energy used is equal to the total available energy given by equations (10) and (11). The
athlete’s speed then declines as the race is finished at reducing maximum available power. During the
constant speed phase v = v., the amount of energy used can easily be calculated by accurate numerical
integration of the appropriate power function. From equation (20), and since dv./dt = 0, it follows that
the energy used during this phase, denoted by E., is given by

E.(t) = /t (AUC\/H-—U) + Kv2/(1+ w)3) dt,

t1

where w = v1/(rg)?.

It should be noted that if the value of v, is chosen sufficiently small, the race can finish at 400 m
before the point where the total energy used matches the total available energy. However, it is found
that such a low value of v, is always a poor strategy, resulting in slower times for a 400 m race.

It remains to estimate the values of the heat coefficient A, the drag constant K, the anaerobic
parameters (Prax)1,2,3, A1,2,3 and 9 2.3, and the aerobic parameters R and A. The values of A and K
are well known and Ward-Smith has used world-class time splits for the 100m event to estimate the
anaerobic and aerobic parameters, see [16, 17]. Table 1 summarises the values used by Ward-Smith for
the men’s 100m event and Table 2 gives the corresponding values for the women’s event.

A=396Jke' m~!' | K =0.0029 m~!
(Prax)1 = 166 Wkg=™! [ A\, =0.9s7! Y =20 57!
(Prax)2 =301 Wkg ! | Ay =0.20s 1 s =3.05 !
(Puoax)s = 341 Wkg ! | A3 =0.033 s | 43 = 0345
25 W kg ! A=0.033s !

=
Il

Table 1: Ward-Smith’s constants and parameters for the men’s 100 m sprint.
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A=394Jkeg ' m™! K =0.0031 m~!
(Prax)1 =158 Wkg™! [ A\ =0.95s7! Y =20 st
(Poa)e =219 Wkg ! | Ao =021 51 | 4hp =3.05
(Prax)s =324 Wk | Ay = 0.041 s | oy = 0.44 571
R=215W kg ! A=0.041 5!

Table 2: Ward-Smith’s constants and parameters for the women’s 100 m sprint.

It is known that the build up of aerobic power is proportional to the depletion of the glycogen
store in anaerobic glycolysis. As a consequence, Ward-Smith [15] argues that there are good reasons for
assuming that A\ can be approximated by A3. He supports this notion using theoretical considerations
and experimental evidence. Ward-Smith used parameter estimation of A3 and thus deduced the value
of A.

Ward-Smith’s estimated constants and parameters listed in Tables 1 and 2 are obtained from 100 m
time-split data where the anaerobic supply mechanism is predominant. For the 400 m event, it is to
be assumed in this paper that world-class runners have similar characteristic constants and parameter
values, with the notable exception of the value of the aerobic parameter R, which represents the limiting
aerobic power. In the 100m event, aerobic energy supply has barely commenced (see Figure 1) and so
any estimation of R from associated time-split data must be subject to question. Estimates of R from
longer events have been made, see for example Ward-Smith [14], where a men’s value of R = 23.5 watts
per kilogram was obtained, averaged over a range of event distances from 100 to 10000 metres. However,
this estimate did not include the effects of track curvature on energy, which are significant in the 400 m
event. The associated aerobic parameter A will be retained for the 400m model, since as mentioned
above, there are compelling reasons for its approximation to the anaerobic parameter Ag.

5 Results for averaged time splits

The model for the 400 m event will now be matched with averaged 50 m time splits of the eight finalists
from the Seville final. First the men’s event. The parameter values from Table 1 are initially used,
including a starting value of R = 25. The running strategy to be used is assumed to include the
constant speed phase, so that maximum available power is used until speed v, is reached at time ¢;.
This speed is maintained until time -, the point at which total energy used equals total energy available.
Using maximum available power, the speed then declines until 400 m is reached. It is assumed that the
averaged runner runs in a lane with averaged curvature (i.e. halfway between lanes 4 and 5). The average
reaction time was 0.18 seconds.

Using starting values (R, v.) = (25,9.5), the Nelder-Mead Simplex Method was then used to search
for the optimum value of (R,v.). The optimal value is to be taken in the sense of minimum value of the
sum of absolute differences between the computed model results and the averaged time-split data at the
50 m intervals. The results are summarised in Table 3, with optimal values R = 26.71, v, = 9.78, sum
of absolute differences (SAD) = 0.82, and race time 44.45 seconds which is identical with the actual
recorded time.

It should be noted at this stage that averaging the time splits at each 50 m interval mark is bound to
be rough. Each runner is in a defined lane with individual curvature characteristics. Also, each runner
is using an individual race plan which need not approximate a constant speed phase. Mindful of these
reservations, the optimal values produce strong support for the model.

It is interesting to compute the race time for the case where the runner’s strategy is to use maximum
available power for the entire race. In this case there is no constant speed phase. The model computes
a time of 44.59 seconds, a significantly slower time and thus a poor strategy.

The above optimisation is an attempt to match the model closely with the actual time splits used in
the race. It is possible to check alternative strategies by using the model to simulate the corresponding
times. Using the value R = 26.71 from above, the Nelder-Mead Simplex Method was again used to
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50 100 150 200 250 300 350 400

6.11 11.05 16.056 21.23 26.59 32.12 3799 4445
5.94 11.05 16.16 21.28 26.39 31.88 38.05 44.45
0.17 0.00 -0.11 -0.05 020 024 —0.06 0.00

Distance (m)

Time splits (s)
Computed times (s)
Differences (At)

0
0
0
0

Table 3: The best constant speed phase fit for the averaged time splits of the eight finalists in the
men’s 400 metre final in Seville 1999. Optimal aerobic R = 26.71 Wkg !, optimal constant speed
ve = 9.78ms!; measure of fit, SAD = 0.82 seconds.

optimise the value of v. to minimise the race time for this averaged athlete. It was found that v, =
9.26ms~! yielded a minimum race time of 44.36 seconds.

The analysis was repeated for the women’s 400 m event which yielded an optimal value of (R, v.) =
(24.12,8.51) for the best fit to the data with a race time of 50.24 seconds. Optimising v, for the fastest
race time gave a value of v, = 8.19 for a time of 50.15 seconds. The resulting times are summarised for
the men’s and the women’s averaged results in Table 4.

Max. avail. power Best fit to data  Fastest time fit

Averaged men’s times (s) 44.59 44.45 44.36
Averaged women’s times (s) 50.47 50.24 50.15

Table 4: Time comparison using (i) maximum available power, (ii) best R and v, to fit the given data,
and (iii) race time for optimal choice of v,.

6 Models for Michael Johnson and Cathy Freeman

In the 1999 Seville World Championships, Michael Johnson, running in lane 5, set a world record of
43.18 seconds for the 400 metre event. His reaction time was 0.15 seconds. Based on the above averaged
results, starting values (R,v.) = (26.71,9.78) were then used to search for optimal results for Johnson’s
data fit to the model, again using the Nelder—Mead Simplex Method and the values of the constants and
parameters from Table 1. The optimal values were (R, v.) = (29.15,9.76). The corresponding computed
race time was 43.18 seconds with the sum of absolute differences between the computed model results
and the averaged 50 m time-split data SAD = 0.57. The results for Johnson are summarised in Table 5.

Distance (m) 0 50 100 150 200 250 300 350 400

Time splits (s) 0 6.14 11.10 16.10 21.22 26.42 31.66 37.18 43.18
Computed times (s) | 0 5.92 11.05 16.17 21.29 26.42 31.54 37.14 43.18
Differences (At) 0 022 005 =007 -008 -0.00 0.12 0.04 -0.00

Table 5: The best constant speed phase fit for Michael Johnson’s 50 m time splits in the men’s 400
metre final in Seville 1999. Optimal aerobic R = 29.15 W kg !, optimal constant speed v, = 9.76 ms~!;
measure of fit, SAD = 0.57 seconds.

Figure 2 illustrates the closeness of the fit of the computed model to Johnson’s actual 50 m time-split
data. Hence an athlete having all the attributes of the estimated constants and parameters used here,
and running using the defined strategy of a constant speed phase v. = 9.76ms™!, would closely match
the Johnson time-splits and would finish with the same time of 43.18 seconds.

Running under maximum available power, the model computes a race time of 43.30 second which is
significantly slower.
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Figure 2: Michael Johnson’s Seville 1999 50 m time splits and the model fit using constant speed phase
v = 9.78ms~ L.

Max. avail. power Best fit to data fastest time fit

Johnson’s times (s) 43.30 43.18 43.14
Freeman’s times (s) 49.88 49.67 49.59

Table 6: Time comparison using (i) maximum available power, (ii) best R and v, to fit the given data,
and (iii) race time for optimal choice of v..

Using the estimated value of R = 29.15, the Nelder-Mead Simplex Method was then used again to
find the value of v, which gives minimum race time for the computed model. In fact the optimal value
was v, = 9.52 with corresponding race time 43.14 seconds. This represents a small but not insignificant
improvement in time.

Figure 3 shows the corresponding three velocity profiles which are computed by the model based
upon Johnson’s estimated parameters. The maximum available power profile clearly shows the effect of
the change from curved to straight track and vice versa.

The Seville women’s 400m event was won by Cathy Freeman in a time of 49.67 seconds. She ran
in lane 5 and had a reaction time of 0.193 seconds. A similar model analysis was carried out based
upon the 50 m time splits. The optimal fit to the data corresponded to (R,v.) = (24.77,8.59) with a
computed time of 49.67 seconds. A fastest time of 49.59 seconds corresponded to an optimal value of the
constant speed phase given by v, = 8.28 ms~!. The time corresponding to usage of maximum available
power was 49.88 seconds.

Figure 4 illustrates the fit of the computed model to Freeman’s actual 50 m time-split data. With an
SAD of 1.2, the fit is not quite as good as Johnson’s, but an athlete with the assumed characteristics
of the model, and running using the defined strategy of a constant speed phase v. = 8.59ms !, would
closely match Cathy Freeman’s time splits and would finish with the same time of 49.67 seconds.

Figure 5 shows the corresponding three velocity profiles computed by the model based upon Free-
man’s estimated parameters.

A summary of the times for these model computations based upon Johnson’s and Freeman’s profiles
is given in Table 6.



164 Chris Harman

speed (m/sec)
t

4+
2+ —— max available power
v, = 9.76 m/s
oV = 9.52 m/s
—800 0 100 200 300 400 500

distance (metres)

Figure 3: Computed model profiles based on Michael Johnson; A marks the end of the first curve and
B, C mark the start and end of the second curve in the track.
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Figure 4: Cathy Freeman’s Seville 1999 50 m time splits and the model fit using constant speed phase
v = 8.59ms L.
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Figure 5: Computed model profiles based on Cathy Freeman; A marks the end of the first curve and
B, C mark the start and end of the second curve in the track.

7 Discussion

Values of the energy supply parameters used in the model obviously require further investigation. The
assumption of the applicability of the majority of parameters from Tables 1 and 2 to the 400 m is only
a start. It has been argued above that it is reasonable to so do. However, it is quite possible that this
results in a compensating biased estimate of the aerobic R. Additional estimates of the predominant
anaerobic glycolysis parameters would be very useful. Ideally these would be for averaged results and
for individual athletes. This would require more physiological measurement data and more track time
splits.

Alternative approaches to the energy supply mechanism might be possible. For example, Morton [10]
has developed a model incorporating three important parameters, anaerobic work capacity, critical power
and maximal instantaneous power, and di Prampero [2] has a model for energy/power consumption,
but this applies only up to running speeds of about six metres per second.

One of the difficulties faced is the lack of time-split data. At the present time, the only available
data are the 50 m time splits. There is no readily available information on the most interesting phase of
the race, the first 50 metres, where the predominant acceleration occurs. Film coverage of finals might
yield useful information. In the above model fits to the data, it is interesting to note that the fit is less
accurate at the 50 metre mark. Runners seem to take longer to reach this mark than predicted by the
model. It has been assumed that runners accelerate at maximum available power until the constant
speed phase v = v, is reached. Perhaps this is not quite so. More data is needed.

Curvature has a significant retarding effect on expected race times for the 400 m event. Computations
were carried out using the model, with and without the curvature effect. For Johnson’s profile, there was
a 1.7% difference and for Freeman there was a smaller difference of 1.1% in race time. This compares
with the model’s computed air drag effects of 6.6% and 6.0% for Johnson and Freeman respectively.

Of course, 400m runners do not run exactly with a constant speed phase as assumed in the model.
However the model’s match with time splits is sufficiently good to enable alternative running strategies
to be tested for effectiveness. In this paper, it has been shown that strategies with an optimally selected
slower constant speed phase lead to improvements in race time. Any alternative strategy could be tested
with the model developed here.
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Abstract

An 11-segment mathematical model of a diver is presented where the human body is described as a
series of nested levels. The diver’s orientation is defined in terms of Euler parameters instead of Euler
angles. From this model, equations of motion are formulated using a Hamiltonian approach where the
resultant equations describe the diver’s displacement, orientation and momentum. When compared
with known solutions of a rigid body, the simulation model is highly accurate. Comparisons with
experimental data are available.

1 Introduction

Although the physical laws governing motion have been known for centuries, research aimed at making
mathematical predictions of a twisting dive has been minimal. Traditionally, theoretical studies of
twisting somersaults have described movement in terms of a mathematical simulation model. To date,
all diving models have derived their equations of motion from angular momentum formulas calculated
about the diver’s centre of mass.

One of the earliest models was introduced by Dapena [1] who employed a 15-segment model where
each segment was represented by a thin rod. Using the fact that a diver’s angular momentum is con-
served, he derived angular velocity equations for the upper trunk. Dapena found that his simulation
model was reasonably accurate for 0.6-0.8 seconds. Errors resulted from the fact that each segment had
no inertia about its longitudinal axis.

As an extension of his cinematographical study [7], Van Gheluwe [6] combined a mathematical
simulation model with experimental data. Using a six-segment model, Van Gheluwe derived differential
equations for angular velocity of the trunk and used numerical techniques to find the time evolution of
the whole body angular velocity. From this analysis, Van Gheluwe’s model gave reasonable estimates of
a backward twisting somersault. However, errors became apparent toward the end of the motion.

Perhaps the most detailed analysis of twisting dives can be found in two series of papers published
by Yeadon [9-17]. In his 1990 series of papers, Yeadon developed an 11-segment geometric inertia
model. Combining this inertia model with whole body angular momentum equations, he calculated
time histories of somersault, tilt and twist angles and solved them analytically.

Yeadon evaluated his model with film of twisting somersaults and found a good agreement with
simulation estimates. However, he noted some differences between simulated and filmed performances in
the second half of the simulations. This model also showed a close match with mean angular momentum

*This paper was researched at the University of Queensland, Australia, and at the University of Loughborough, UK.
The author is grateful for the hospitality and guidance given by the members of the Sports Biomechanics Laboratory at
Loughborough University.
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estimates, but displayed higher discrepancies for momentum time histories [10]. These discrepancies
were attributed to measurement and inertia value errors.

One of the most recent additions to twist analysis has been computer animation. Wooten and
Hodgins [8] simulated the motion of a platform diver using forward dynamics with a control system.
The equations of motion were generated from a commercially available computer package, SD/FAST.
This package uses Kane’s method and was coded for a 15-segment rigid body model. While the model
did provide a good simulation of simple somersaulting dives, discrepancies were noted for simple twisting
dives. These discrepancies were heightened when dives of increased complexity were modelled.

In each of the aforementioned studies, Euler angles were used to describe the diver’s orientation.
Describing orientation in terms of a triad of Euler angles is tempting as there are the same number of
parameters as degrees of freedom. However, the problem with using this description is that no three-
parameter set can be both global and non-singular [5]. To date, researchers have had to proceed with
extreme caution to avoid singularities. Not only does this mean writing lengthy code, but it also means
that results must be interpreted with great care.

The model presented in this paper represents a novel approach to modelling twisting somersaults.
Instead of using the diver’s centre of mass to describe flight, it is assumed that the diver’s reference
frame lies at a predetermined site within his body. Thus, the motion of a physical point is generated
rather than the imaginary centre of mass. The use of a physical point makes video analysis and physical
interpretation easier. It will also ensure that applications are relevant for coaches.

The diver’s orientation will be described by Euler parameters instead of Euler angles. The most
powerful advantage of using a four-parameter set is that it does not contain any geometric singularities.
Moreover, the resultant equations of motion are universally nonsingular.

2 Equations of motion

To solve the problem of modelling a diver, a nested coordinate system has been employed. This approach
was chosen as it resembles the human body; distal limbs are most naturally described in terms of
proximal limbs, and proximal limbs are most naturally described in terms of the torso.

By defining a system of rigid bodies in terms of a reference frame and two nested levels (see Figure 1),
the diver can be described as a system of 11 segments. These segments represent the diver’s head and
chest, middle torso, lower torso, upper arms, lower arms, upper legs and lower legs.

For this simulation model, each nested level segment is prescribed with its own mass, inertia, angular
velocity, linear momentum, orientation and displacement. For simplicity, the coordinate axes of each
level have their origin at the segment’s centre of mass.

It is easier to calculate Euler angles than Euler parameters from film data. Given the Euler angles
of each coordinate system, the Euler parameters, b;, are defined as
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Here, we have chosen the 1-2-3 set of Euler angles as they represent the diver’s somersault, tilt and
twist. However, the definition of Euler parameters may be parallelled for all 12 sets of Euler angle
sequences [3].
Another powerful advantage of using Euler parameters is that the relationship between their deriva-



Analysis of a twisting dive 169

/ N
/ Reference®
4 segment

\

’

7

Figure 1: Eleven-segment model of the human body.

tives and angular velocity is extremely elegant:

b
0 —by by by —bo 50
Q| =2 by —bs by by bl . (1)
Qg —bg b2 —b1 bo .2

b3

From equation (1) it can be seen that the transformation matrix relating by to Q is orthogonal. This re-
lationship ensures our equations of motion will be universally nonsingular. The corresponding kinematic
equations for any definition of Euler angles are transcendental, nonlinear and contain a 0/0 singularity.

The equations of motion have been formulated by finding the kinetic and potential energy of each
level, calculating the Lagrangian for the system of rigid bodies and then applying the Legendre transform
to find the Hamiltonian (see Appendix). By deriving differential equations for the reference segment,
the motion of the whole diver can be analysed and practical applications, throughout the dive, can be
made. Using this approach we are left with four sets of nonlinear differential equations to describe the
diver’s flight. These equations describe the linear momentum, displacement and orientation of the diver.
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3 Evaluation of method

In order to ascertain the accuracy of this approach the equations of motion were coded into fortran
and integrated numerically using the Merson form of Runge—Kutta. Firstly, results were compared with
known rigid body solutions and then they were evaluated against experimental data to assess their
accuracy.

3.1 Rigid body motion

As shown in Appendix A4, the differential equations for linear momentum, displacement and orientation
are consistent with the laws of motion. However, as the generalised momentum for the Euler parameters
has no physical significance, the model can only be validated by how closely it replicates motion.

To check the model’s angular velocity estimates, Euler’s equations of rigid body motion were coded.
The body’s total inertia was calculated using the parallel axis theorem.

Results were compared for a symmetric and an asymmetric rigid body. The symmetric case was
chosen as it depicts a simple somersaulting movement. The whole body inertia for this example was

5.275 0 0
Lok, = 0 5.509 0
0 0 0.732

When given initial angular velocity about the x-axis, initiating the somersault, both Euler’s equations
and the simulation model showed that angular velocity remained constant throughout the simulation;
as expected. For the asymmetric case, the diver’s inertia was calculated to be

5.418 0 —0.067
Lo, = 0 5.683 0
—0.067 0 0.763

This slightly asymmetric case was chosen as it is a good indicator of how well the simulation model
will somersault and twist at the same time. The diver was given the same initial conditions as for the
symmetric case. The angular velocity comparisons can be seen in Figure 2.

Figure 2 shows that the simulation model closely approximates Euler’s equations of motion. Further,
it can be seen that Euler parameters handle the singularities, inherent in Euler angles, very well. The
slight discrepancies in the output can be attributed to the fact that the whole body inertia was given
for Euler’s equations where segmental inertias were prescribed for the simulation model.

3.2 Experimental analysis

As the simulation model has been shown to accurately compute known rigid body solutions, the accuracy
of the proposed theoretical model was evaluated using video data of divers performing various twisting
somersaults.

For this analysis, body segment parameters (BSPs) were calculated using de Leva’s adjustments to
Zatsiorsky’s data [2]. The estimates are the most comprehensive data set currently available for females
and non-Caucasian males. Data from an in vivo method was chosen as the validity of mathematically
determined BSPs is contingent upon how well geometric solids can describe body segments.

Fifteen joint centres were digitised from the film data. These points were smoothed with a quintic
spline and each segment’s orientation was calculated. Segmental centre of mass estimates were based
on segment length and angle calculations to limit the effects of digitising error. Each segment’s linear
and angular velocities were determined from quintic splines.

The orientation, velocities, mass and inertia of each nested level segment were input into the sim-
ulation model. The diver’s somersault, tilt and twist were based upon Yeadon’s [10] design where the
whole body orientation in space is specified by the orientation of an orthogonal reference frame f in
the body relative to the inertial frame. The rotating body frame f;, f5, f3 is not fixed to one particular
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Figure 2: Angular velocity comparisons for Euler’s equations and the 11-segment rigid body model.
The solid line shows the solution for Euler’s equations of motion and the dashed line represents the
simulation model’s solution.

segment, of the diver, but representative of the whole body orientation. For this model, f3 extends from
the mid-shoulders to the mid-thighs, f; is parallel to the vector connecting the right hip joint centre to
the left hip joint centre and f, extends from the front of the body to the back. The body frame axes
were calculated from simulation estimates.

By combining the whole body orientation with the location and orientation of the diver’s lower torso,
a complete picture of the dive is painted. A detailed analysis of these simulations is available.

4 Conclusion
A novel approach to modelling a twisting dive has been described. By defining the diver’s orientation

in terms of Euler parameters, universally nonsingular equations of motion were derived. Further, by
employing a Hamiltonian approach, it was noted that physical points may be followed with ease.
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The simulation model was tested against Euler’s equations of motion for a rigid body. The simulation
was shown to accurately replicate somersaulting and twisting movements. It was also shown to handle
the singularities inherent in Euler angles very well.

A method for testing the accuracy of the simulation model for actual performances has been outlined.

There are many possibilities for the application of this approach. With the accuracy of the model
for filmed performances determined, the simulation model can be used to examine the effect of differ-
ent twisting techniques on overall performances. Further, it may be used to create new dives without
incurring injury to divers.

Appendix

Formulating rigid body dynamics by directly applying Newton’s laws can be difficult. For a complex
system of bodies, accurately determining each segment’s acceleration and force may be problematic. In
order to overcome this difficulty, a general approach is useful.

The principle of least action is the most general form of the physical laws governing motion. This
principle states that every mechanical system can be described in terms of a function, L(q, ¢, t), where
q are generalised coordinates and ¢ are their velocities [4].

For a closed system (that is, a system of bodies which interact with each other but do not interact
with any other bodies), the Lagrangian is simply

L=T-U, (2)

where T is the kinetic energy of the system and U is its potential energy.

Al Kinetic energy
The kinetic energy of a system of rigid bodies is given by

1 1
T = Z Emvf + §QsIstk,

where the summation is taken over all segments in the body [4].

As the velocity v, of each nested level segment is not naturally expressed in terms of the inertial
frame, we need to determine the motion of a moving body in terms of a fixed coordinate system [4].
Assume that dA;/dt is the rate of change of an arbitrary vector A5 with respect to an inertial coordinate
system. If the position of As changes in the moving system,

dAs  d™A,
dt —  dt

+ €slchkAma

where d" A, /dt is the rate of change of A, with respect to the moving system [4]. Thus, for the reference
segment,

1 . 1
T, = §m|Rs|2 + §QsIstk,

where m is the mass of the reference segment, Ry is the displacement vector from the inertial origin to
the segment’s centre of mass, (25 is the segment’s angular velocity and Zg, is its inertia. For the first
nested level,

1. . . ) 1 . ) ,
TI = §Zm|Rs + lps + Cskeklnﬂllpn|2 + E(Qs + lcskzwk)lcslljlmlcnm(gn + lcnpzwp)y
where ‘m is the mass of the ith body connected to the reference segment, Cy, is the direction cosine
matrix which defines vectors from the reference frame in terms of the inertial frame, *Cyy, is the direction
cosine matrix which defines vectors from the frame of the ith segment in nested level I in terms of the
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reference frame, ‘w, is the angular velocity of the ith segment and ‘p, is the displacement vector
connecting the reference segment to the ith segment of nested level 1.

For the second nested level,

Trr :il/”Rs + Zps + 75 + ' Cop€rin'wi' T + Cskeklnﬂl(zpn + chmle)|2
+ 5(93 +'Cip (Zwk + Z(Ckwlgw))lell(Clmlenl(Cpnqup(Qq + lcqu(lwu + l(cuvlgv))a

where ?/1 is the mass of the ith segment of nested level IT connected to the ith segment of nested level I,
i¢, is the angular velocity of this segment, ‘I, is its inertia, ‘7, is the displacement vector connecting
the ith segment of the first nested level to the ith segment of the second nested level and ‘C,; is the
direction cosine matrix defining the coordinates of the ith segment of nested level II in terms of the
coordinates of the ith segment of nested level 1.

A2 Potential energy

The potential energy of a rigid body is somewhat easier to compute than the kinetic energy. In a uniform
field, the potential energy of a body is given by

U= —Fyr,
where the same external force Fs acts on each body at any point in the field and r, is the displacement
vector of each body from the inertial origin.
For the reference segment it can be seen that
Uy = méssgRs,
where g is gravity. For the ith segment of nested level I we have

U2 - im(ss3g(Rs + Csnipn)a

and finally, for the ith segment of nested level II connected to the ith segment of nested level I, we find
that

Us = ilussiig(Rs + Csn(ipn + lcnkZTk))

A3 The Lagrangian

Using the equations for the kinetic and potential energies of each level and substituting them into (2)
the Lagrangian for this system of rigid bodies is

1 . 1, - ;. i
L :§m|Rs|2 + Elm|Rs +"ps + Csr€rin ' pul?
+ §Z,U|Rs + ll')s + Z7._5; + lcskeklnlwlz’rn + Cskekanl (lpn + lCnszm)|2
1 1 iy i Nigy AT i i i (3)
+ §QsIan + E(QS +'Csie wk) Ca'lim Cnm(Qn + Cnp wp)
+ 5(93 + lcsk (lwk + Z(Ck:wZ&u))zc(sll(clm lenl(Cpnqup(Qq + quu(qu + l(cuv ng))
—mssgRs — 'mssg(Rs + Con'pn) — 10539 (Rs + Con(*pn + 'Crr' ).
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A4 The Hamiltonian

The primary disadvantage of describing the motion of a diver in terms of the Lagrangian is that, for
a system with n degrees of freedom, we are left with n second-order equations. These equations can
be rather difficult to solve. However, if we express the dynamical equations of motion in terms of a
Hamiltonian, we are left with 2n first-order equations.

In turn, these equations are much simpler. Furthermore, the generalised momenta from the Legendre
transform have physical significance. For our system, the generalised momentum of R is the diver’s
linear momentum.

The solution to each of the resultant equations of motion gives us the displacement, orientation and
momentum of the reference segment as a function of time. Thus we can analyse the complete dynamical
behaviour of a diver in flight.

Given the Lagrangian of our system (see equation (3)), we can use the Legendre transform to find
the generalised momenta. These momenta are given by

Ps = a—-L:
OR,
5, = OL  OL 09y
T oh, 09, ob,
where )
Qs = Oéstbt (4)
and
—b1 —by —b3
1 bp b3 b
“EES by b b
—by b bo
Thus, given

‘As = CorerimU' pm,
‘Bs = Csp€rim ' Crun ' Tn,

‘Dy=" skeklmlwllea

the resultant equations of motion are

Py = —dag(m +'m + 'p), (5)
RS: ps_im(iﬁs+iAs)_i’u(i.p's_‘_i.i.s+iAS+iBS+iDS)’

m+'m+*'u
i)t:')/tsQSa

ﬂ.t = _L2,stIstm - Z'777533gssktipk: - Z',1116539551431‘,(iplc + ickniTn)a

where
00,
Log = =2,
=T 9B,
aCsn
Ssnt = 77—
ET T on

It is evident that the equation for P; is correct. By integrating equation (5), we get

P, = —6,3(m + 'm + 'p)gt.
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Now, the velocity of the body is —ds39¢, which satisfies Py = muv;.
Similarly, the equation for Rs can be proved true. For a system of rigid bodies, the whole body
centre of mass is defined as

1 n
_ i, i
cmg = i m'rg
i=1

where n is the number of segments in the body, M is the whole body mass, ‘m is the mass of segment,
i and 'ry is the displacement of segment i from the inertial origin. Thus, for this model

mRg + im(Rs + iPS) + i.U(Rs + ips + iTS)

m+im+ip

imips + iluf(ips + iTs)
m+im +

cmg =

= R, +

: (6)

Now, the velocity of the centre of mass of a body, falling under gravity, is —ds39t. By differentiating
equation (6) and noting that P; = —(m + *m + *u)ds3gt, we get

N Py — Z7n(lps + iAs) - iljf(ips + i7._s + iAs + iBs + Z'Ds)

R, ! :
m+'m+'u

Finally, it is evident that the equation for by is correct as it is the definition of angular velocity given in
equation (4), where v;5 = ;'

There is no direct way to check that the equation for Bt is correct as it has no physical meaning. Thus
the accuracy of this equation will be determined by how closely the model replicates human movement.
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Abstract

The use of a fast serve followed by a slower serve is almost universal in tennis. Data taken from
grand slam tournaments show that, in many cases, one or both players would benefit from departing
from this strategy.

1 Introduction

There is substantial research literature on the game of tennis, and several papers are concerned with
the appropriate use of the two services which are permitted to the player when serving for a point.
The principal references are Croucher [1], George [2], and King and Baker [3]. It is well known that the
normal pattern is a fast serve followed by a slower serve. It has been suggested that the case for this
traditional pattern is not particularly strong in all matches, and that some players might achieve better
results by using their fast service twice.

We have taken data from all singles matches in the four grand slams of the year 2000, and show
that in a surprising number of cases, one or both players would apparently benefit from departing from
the standard pattern. In particular, we show that the use of two slower serves is often preferable. This
extends the work of earlier investigators who considered only a small number of matches.

2 A model of tennis tournament play

A model for the probabilities involved in winning a service point is as follows. We assume that each
player has two serving techniques. These are a fast service (F), which has a higher probability of being a
fault, and a slower service (S) which is faulted less frequently. The fast service is usually more difficult to
return than the slower service, but in a particular match this may not be the case. Our model assumes
that the server places his serve in the most advantageous fashion. This may be to the opponent’s weaker
side or, more commonly, may be varied in direction to make the receiver’s task more difficult. The
strategy of varying the direction of the serve is not part of this study.

We have four probabilities for each player which are assumed to remain constant throughout the
match. These are the probabilities of being not faulted on each type of serve (P; for F and P; for S) and
the conditional probabilities of winning the rally when each type of serve is not faulted (W; for F and
Wy, for S). The fast serve is defined by the property P; < P». Four strategies are possible, based on the
four possible combinations of fast and slow serves, which we label FF, FS, SF and SS. The conventional
method is to use FS.

Note that although we describe these probabilities in terms of the server, the values of W7 and W,
are partially determined by the skill of the person in returning the serve, and the skill of each player in
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the subsequent rally. The probabilities of success using each of the four strategies are given in Table 1,
which is essentially the same as a table in Croucher [1].

Strategy | Probability of success

FF | AW (2—P))
FS | LW, + (1 - P)P,W,s
SS | PWy(2 — Py)
SF | BWy+ (1 — P)P,W,y

Table 1

The relative values of the strategies are determined by two expressions:

D = PW, — P,Ws,
E = P,W, (P, — Py).

In these, D measures the advantage of a single fast serve compared with a single slow serve (usually
assumed to be negative), whereas E has no simple interpretation.
If D >0, then
P(FF) > P(FS) > P(SF) > P(SS),

where P(FF) is the probability of winning a point with the strategy FF, etc.
However, if 0 > D > E, then
P(FS) > P(FF)

and
P(FS) > P(SS) > P(SF),

while if 0 > E > D, then
P(SS) > P(SF)

and
P(SS) > P(FS) > P(FF).

Note that although SF is not always the worst strategy, there is no region in which it is the best.
Hence its use cannot be justified except perhaps as part of a mixed strategy where surprise is considered
to be important. On the other hand strategies FF or SS are superior to FS for certain combinations of
the probabilities Py, Py, Wi, Ws.

3 Results in four grand slam tournaments

A large number of matches from the singles matches in all grand slam tournaments for the year 2000
have been analysed, and the probabilities P, P>, W7, W5 obtained for each match, since the relevant
data were available from the official web sites.

Table 2 shows raw data for play in the quarter-finals, semi-finals and final in the women’s US
championships in the year 2000. However, in all, data was collected for 858 completed men’s and women’s
singles matches from the grand slam tournaments of 2000, covering the US Open, the Australian Open,
the French Open and Wimbledon (see web site references [4]). The first player in each pairing was the
winner. Note that the player who won the higher proportion of points on serve always won in those
seven matches. Over all matches recorded, this was not true in 6.5% of cases. Presumably, in those
cases, the winner was more successful on the important points.

We assume that in all matches the normal strategy FS was used. The final two columns of Table 2
show projected results if either player moved to strategies FF or SS. These are based on the following
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First Second Won

First serves Won  Second  serves on Double % with % with % with
Player serves in on Ist  serves in 2nd faults FS FF SS
Hingis 56 39 29 17 17 7 0 0.643 0.675 0.412
Seles 63 35 21 28 22 7 6 0.444 0.481 0.304
V. Williams 7 40 30 37 27 15 10 0.584 0.577 0.515
Tauziat 79 41 24 38 36 17 2 0.519 0.450 0.471
Dementieva 78 50 33 28 22 14 6 0.603 0.575 0.607
Huber 80 45 29 35 26 13 9 0.525 0.521 0.467
Davenport 69 33 24 36 33 21 3 0.652 0.529 0.632
S. Williams 82 54 34 28 26 12 2 0.561 0.556 0.459
V.Williams 89 52 38 37 33 18 4 0.629 0.604 0.539
Hingis 105 83 48 22 22 15 0 0.600 0.553 0.682
Davenport 63 32 29 31 30 15 1 0.698 0.687 0.499
Dementieva 84 53 33 31 25 12 6 0.536 0.538 0.462
V. Williams 81 48 33 33 26 14 7 0.580 0.573 0.514
Davenport 70 39 27 31 24 10 7 0.529 0.557 0.395

Table 2: US women’s championship, 2000 (quarter finals, semi-finals and final).

formulas, which enable Py, Wi, P>, W5 (defined earlier) to be calculated from the published data for
each match:

P, =1 — (number of second serves / number of points),
W = number won on first serve / number of first serves made,
P, = 1 — (number of double faults / number of second serves),

W5 = number won on second serve / number of second serves made.

Given these ratios, we can obtain the strategy probabilities for the last three columns of Table 2 using
the formulas from Table 1.

We are interested in the strategy which gives the highest probability of winning a point on serve, as
shown in Table 2. A strategy change may not change the result of the match, but it could either make
the match easier for the winner or bring the loser closer to victory.

In two of the seven matches shown in Table 2, both players were correct to use the conventional
strategy; in four matches, one player should have varied; while in one game both players should have
varied. In just one game, the semi-final between Hingis and Venus Williams, there is strong evidence
for a different result if Hingis had used her second service throughout.

This sample of seven matches is not atypical. Results over the whole set of data are given in Table 3
below.

4 Discussion

The number of situations where we have prima-facie evidence of inferiority of the conventional strategy
is surprisingly large. In more than 50% of men’s games and 80% of women’s games, one or both players
would gain by changing strategy. Of course, the evidence is of the hindsight variety. It may not be
obvious early in a match that a shift in strategy is advisable. However, given the data above an astute
coach should at least look for opportunities to shift to FF or SS. Table 3 shows that the most common
beneficial change for women is to an SS strategy, whereas an FF strategy works more often for men,
in spite of the additional double faults. Part of the motivation for this study was the appearance of
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Matches
Total suggesting Winner Winner Loser Loser Result
matches strategy to FF toSS toFF toSS change
Event available change
Women’s
Aust. Open 114 84 21 30 30 39 18
French Open 114 96 32 38 32 46 16
US Open 62 49 15 13 20 20 5
Wimbledon 124 94 27 29 40 33 14
Men’s
Aust. Open 126 67 17 17 30 14 15
French Open 111 59 12 18 23 16 )
US Open 84 42 7 12 16 11 4
Wimbledon 123 70 23 16 34 11 12

Table 3

information on a television screen during a Wimbledon match between Agassi and Rafter which showed
that Rafter was winning the same percentage of points on his second slower service as on his first faster
service. In that case SS was indicated to save energy and reduce the possibility of a double fault.

The number of situations where it appears that the result of the match would change due to a change
in serving strategy by the loser is also surprisingly higher than expected. Even where the winner also
changes to optimum strategy, Table 3 predicts that 53 of the 414 results would change for the women,
while 36 of the 444 results in the men’s matches would change. Additional results would be reversed if
the winner did not change strategy. Comparison of the proportion of points won on serve is an excellent,
predictor of a match result, but not perfect. Hence the number of changed results might be slightly less
or greater than those presented.

The results clearly show that at least the coaches of women tennis professionals should be more
aware of the possibilities of a strategy change for their protégées.

We have found cases where a player should use the FF strategy against one player and SS against
another. Such strategies may vary depending on the court surface. These aspects would need further
analysis.

It is possible to argue that the real gain in a match from shifting strategy might be less than the
above figures indicate:

(a) The opponent realises what you are doing and takes some counter action.

This argument is without merit. The results shown above are not based on the element of surprise.
In conventional play, the receiver prepares for a first or second serve, knowing what to expect.
There is uncertainty in the placement of the serve (backhand, forehand or body) but not in the
type of serve. If a player decides to change, say to SS, he or she is free to announce this to the
receiver, and the above probabilities should still apply.

(b) The opponent gains practice in receiving the same service continually. This may be true.

(c) It may be more tiring to shift to FF if the fast service takes more energy. True, but there may be
compensation in the fact that rallies following a fast serve are usually shorter.

There are however somewhat stronger arguments for the view that an unconventional strategy may
be better than the figures suggest.

(a) If, as predicted, a player changes strategy and wins a higher proportion of service points, then
some service games will be shorter, with attendant physical and psychological advantages.
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(b) A shift to SS saves energy, not just because the service effort may be less, but mainly because
there is rarely a need for a second serve.

5 Mixed strategy

A mixed strategy may sometimes be more effective than a shift to an unconventional pure strategy.
There are several ways in which this could be implemented. An unconventional service strategy could
be used at random times during the match. Alternatively, the unconventional strategy could be used
on important points such as break points or just in the tiebreaker.

If the receiver prepares in a very different way for the fast and slow serves, then we have a two-person
game in the mathematical sense. Even if the preparation is almost identical, the additional uncertainty
might be useful. These cases can be modelled and analysed, but we have no data to make this analysis
useful.
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Abstract

This paper examines team ratings and home advantages of both national (Super 12) and interna-
tional (Tri-nations) rugby union teams from South Africa, New Zealand and Australia in the years
2000 and 2001. Linear modelling methodology is used for parameter estimation. High variability
is a significant feature of the estimation process. Team ratings vary from zero (by convention the
lowest) to over 20 points. Home advantages, which average around eight points, range from low
negative values (a home disadvantage) to positive values in excess of 20 points. Depending on the
schedule of matches, an unusually high percentage of home wins (50 of 69 or 72.5%) occurred in the
Super 12 in 2001. On the contrary, seven of the first twelve matches in 2002 have been away wins.
The high variability makes any attempt at arbitrage a risky venture despite a positive expectation.

1 Introduction

There have been many studies of team (or individual) ratings and home advantage in sport. Literature
reviews in the area include those by Courneya and Carron [6], Nevill and Holder [16] and Stefani [22, 23].
Specific examples include the summer [3] and winter [1] Olympic Games, Australian Rules football [24],
basketball [10, 21, 25], tennis and golf [11, 17], cricket [4, 7], ice hockey [8], alpine skiing [2], baseball [14],
athletics [15], netball [18], soccer [5], rugby league [9, 13]; and many more.

These studies have almost invariably found significant rating differences between teams or individu-
als, and the existence of significant home advantage, either on average or to most teams in a competition.
However, there is very little literature available on rugby union. Only Pretorius et al. [19] investigated
the 1997 domestic Currie Cup season in South Africa, later [20] relating this to altitude, but not weather
conditions.

The purpose of this paper is to investigate team ratings and home advantages at national and
international level rugby union in competitions involving sides from South Africa, New Zealand and
Australia (SANZAR). The years 2000 and 2001 are considered and analysed using linear modelling
methodology.

2 Linear modelling methodology
In the game of rugby union, teams can score five points for a try (touchdown), two further points for

converting a try (a successful kick of the ball between the goal posts, above the bar), and three points
for a penalty or dropped goal (also a successful kick). Both teams in the match accumulate points by
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one or more of these means, the match winner being that team scoring the most points at the end of
the game.

The simplest linear model in such a situation incorporates a neutral ability rating r. for each of the m
teams in the competition, together with a common home advantage h applicable to all teams. It models
the difference in point scores d;;, over a match between the home team i (by convention named first)
and away team j, by the difference between their respective ratings adjusted for the home advantage:

dij:h+7"i—7"j+6, (1)

where r; and r; are the respective ratings and e is an error term (white noise).
Expressed more fully over a set of n matches in a competition between m teams,

D=hI+JR+E,

where D is an n x 1 matrix of score differences; I is an n X 1 unit matrix; .J is an n X (m — 1) indicator
matrix such that, for any row, column entries are +1 for the home team, —1 for the away team and
zeros elsewhere; R is an (m — 1) x 1 matrix of ratings; and E is an n x 1 matrix of random errors.

Note that an mth column for J is linearly dependent on the previous m — 1 columns, and so is
omitted to avoid singularity. The mth team rating is therefore by default zero.

This model can most easily be fitted by ordinary least squares using any common linear regres-
sion procedure. Estimates of h and the r. together with their standard errors, and an overall error of
estimation are obtained. Ancillary output such as goodness-of-fit statistics is also available.

A second model simply removes the restriction that all teams share a common home advantage,
introducing parameters h., one for each team. Thus:

di]-:hi+ri—rj+e. (2)

The full matrix formulation adds in similar fashion to above, a second indicator matrix, with units
in the columns of the home team for each match, and zeros elsewhere. Again this model can be fitted by
ordinary least squares, though the “No constant” option should be selected in the regression command.

A third model considers the set of 2n scores, s.(. or 5(.). themselves, and widens the concept of a single
rating of team ability, into two ratings. One represents the offensive strength of a team, o., reflecting its
ability to score points. The second represents the defensive strength of a team, d., reflecting its ability
to prevent its opponents scoring. Specifically:

Si(jy = hi+oi—dj+e and S =0j —di +e 3)

represent the modelling of the pair of scores obtained in the match between team i at home and team j
away, respectively. Three indicator matrices, of appropriately located +1’s, —1’s and zeros are required,
and the whole model can be fitted by ordinary least squares once again.

The data to hand consists of the records of all full-time scores by both sides in all the Super 12
and Tri-nations rugby union matches played in the years 2000 and 2001. It is these data that are to be
modelled. Data for 2002 (Super 12 only) are available only up to the time of writing.

3 Results and discussion

With three models and two competitions over two years (which may or may not be combined, weighted
or otherwise) there are a large number of possible applications to choose between. I shall consider only
a few for the purposes of illustration.

3.1 The Tri-nations

This competition involving South Africa, New Zealand and Australia is a neat example of a small
balanced home and away league, in which each team plays each other team once at home and once
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Ability ratings Home
Year South Africa New Zealand Australia | advantage
2000 0.0 6.3 7.7 5.5
2001 0.0 4.0 3.5 0.3
Combined 0.0 5.2 5.6 2.9

Table 1: Team ability ratings in the Tri-nations competition, 2000 and 2001.

away. Model (1) applied to 2000 and 2001, and to both years combined (unweighted), yields the results

given in Table 1.

South Africa has clearly been the weakest team, and the honours seem to be only very slightly in
Australia’s favour, despite Australia winning the series in both years.
Now consider model (3), and, for the purposes of making a prediction, exclude only the final match
of 2001, played between Australia and New Zealand. The estimates in Table 2 are obtained based on

the preceding eleven matches.

Country Offensive rating Defensive rating Home advantage
Australia 16.0 2.7 6.2
New Zealand 29.4 —8.5 —8.5
South Africa 6.2 0.0 10.0

Table 2: Offensive and defensive ratings, Tri-nations 2000 and 2001.

That final match, played in Sydney would have had a predicted scoreline of Australia 31 (16.0 +
6.2 — (—8.5) = 30.7), New Zealand 32 (29.4 — (—2.7) = 32.1). In fact, Australia, in scoring a last gasp
try, won by 29 to 26.

3.2 The Super 12

The Super 12 competition is played between twelve regional teams; four from South Africa, five from
New Zealand and three from Australia. Each team plays each other team once only, with a home/away
split of five/six or six/five. Pool play consists therefore of 66 matches, and thereafter there are two
semi-finals and one final; 69 matches in total.

In order to investigate both differences between teams and between years in a larger competition, I
illustrate by considering the application of model (2) to the 69 matches in each of 2000 and 2001. The
estimates of ratings and home advantages in Table 3 are obtained.

The dominance of the Brumbies in both years, both at home and away is clearly evident. Likewise is
the poor performance of the Bulls. Big downward movers between the years were the Blues, Crusaders
and Hurricanes. The Crusaders dropped only in their rating, but the Blues and Hurricanes dropped
both in their ratings and home advantages. There are no obvious big upward movers, so it can be
concluded that the Sharks (who lost in the final in 2001) made the most of their opportunities. Given
that the competition is not balanced home and away, and noting some of the differences observed in
this table, it would be fair to say that the outcome of the competition is to some extent influenced by
which opponents a team plays at home, and which it plays away.

The overall standard, as represented by the range of the ratings (the worst team is conventionally
zero rated), appears to be more even in 2001 than in 2000. This is true both at home and away as the
average and range of home advantages have changed little.

The leading four teams after the completion of pool play in the 2000 season were the Brumbies, Cats,
Crusaders and Highlanders. The Crusaders beat the Brumbies by one point in the final in Canberra.
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Away rating Home advantage Home rating
Team 2000 2001 2000 2001 2000 2001
Blues 339 13.7 -86 —-2.6 253 11.1
Brumbies 36.6  18.8 5.8 20.7 424  39.5
Bulls 0.0 7.7 187 -3.8 18.7 3.9
Cats 129 13.6 30.6 2.6 43.5 16.2
Chiefs 14.4 7.8 6.5 13.0 209 208
Crusaders 29.5 7.8 9.3 7.7 388 155
Highlanders 20.3 09 164 21.5 36.7 224
Hurricanes 19.3 87 11.8 2.0 31.1  10.7
Reds 23.1  16.1 9.5 0.6 326 16.7
Sharks 199 186 —4.1 2.3 15.8  20.9
Stormers 286 172 -3.2 —-2.0 254 152
Waratahs 24.1 0.0 4.3 30.5 284 305
Mean 21.9 10.9 8.1 7.7 30.0 186

Table 3: Home and away ratings in Super 12 rugby, 2000 and 2001.

A prediction would have had a Brumbies win by 13 points (42.4 — 29.5 = 12.9). Likewise in 2001, the
Brumbies, Cats, Reds and Sharks comprised the semi-finalists, with the Brumbies clear winners by 30
points over the Sharks in the final in Canberra. A prediction would have had them winning by 21 points
(39.5 — 18.6 = 20.9).

3.3 A statistical note

Of course not all the estimates presented above are significant in a strictly statistical sense, but they
are presented for comparative purposes rather than in any attempt at parsimonious modelling. One
particular feature of the modelling not mentioned previously is a high degree of variability. This manifests
through a large standard error of estimation (around +13 points in a Super 12 year and 20 points
when two years are combined) and low to moderate goodness-of-fit statistics (R? in the 35-60% range).
It goes without saying that this makes any attempt at arbitrage a risky venture despite the ability to
identify bets with positive expectation.

To illustrate the variability inherent in such activity, Figure 1 shows the ups and downs of the
following three betting strategies over the 69 matches of the 2001 Super 12 season starting with a pool
of $750.00 (thirty investors each contributing $25):

(a) Bet proportional to the Kelly criterion [12] using model (1) but limiting the total outlay in any
one week to 60% of the current pool (the real § strategy adopted).

(b) Bet 10% of the current pool on the predicted winners each week, using model (1) (virtual §).

(c) Bet 10% of the current pool on the home team in each match each week (virtual $).

It is clear that a profit can be made, but the ups and downs and different strategy outcomes are
enough to unnerve most investors.
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Abstract

Soccer games analysis has so far been done only by watching the recording of the game and making
remarks about the interesting elements in it. There is no exact data to use, let alone detailed and
quantitative analysis of player and team performances and tactics.

This paper proposes a different approach to match analysis, using cameras and computers to
extract player coordinates throughout the whole match. Once we have the coordinates database,
any statistics can be inferred, e.g. on individual player performance (position, speed, acceleration,
field coverage, etc.) as well as on team tactics (players’ complementarity, cohesion, field coverage,
etc.).

1 Overview

In this paper we propose a full technological process for match analysis. As it is a proposal, not all the
steps are implemented and there are still problems to be tackled. But the potential of such an analysis
method is huge, as will be pointed out.

The process by which we obtain the desired analysis and statistics of a soccer match has several steps:
match taping, digitising the video, coordinate extraction, and full analysis on the coordinates database.
Each of these steps will be described in the following. The whole process is depicted in Figure 1.
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Coordinates
database

FlayerTracker

o O

Tape

Digitized video

Figure 1: The whole analysis process.
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2 Match taping and digitisation

We start from the video recording of a soccer match on tape. Taping of the match is done with four
fixed cameras from the four corners of the field (Figure 2), each surveying a quarter (in order to get
sufficient video quality for the next step). The cameras are fixed, static ones. This is required in order
to calculate the mapping between the position of the player in the image and its real position on the
field.

i
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Cj} ) - Camera wiew angle
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Figure 2: Camera positions for match taping.

After the whole match is recorded on tape, it has to be digitised and stored as a video file (avi).
Once we have the digital recording of the match, the coordinate extraction tool can be applied.

The digitised videos can have any resolution as far as the extraction tool is concerned, but there
are limitations due to the minimum image quality needed for being able to identify the players in the
images. For digitisation we used Dazzle MovieStar (www.dazzle.com), a very easy-to-use multimedia
tool that uses some dedicated hardware to do digitisation and video compression in real time. Some
parameters that we used in the digitisation process are: MPEG-2 video encoder, image size not bigger
than 720x480 pixels, a sampling rate of 25 frames per second, and colour depth of 24 bits per pixel.

The processing of these images does not run in real time. The application is run on a computer
with a 500 MHz processor and 512MB of RAM, using an image processing algorithm that achieves a
compromise between accuracy and speed, resulting in a processing rate of ten frames per second, that
is, 2.5 times slower than real time.

3 Coordinate extraction

PlayerTracker is a tool that we developed especially for this step of the process, i.e. coordinates extrac-
tion. It uses the images digitised in the previous step. Those images are processed and the players are
automatically tracked throughout the match. The coordinates of the players are saved in a database for
exploitation in the next step (analysis).

The PlayerTracker’s objective is to obtain the coordinates of the players, the referee and the ball
during the match. This tool makes use of image processing techniques to track each player during the
whole match and compute their positions on the field in every frame of the video recording.

The coordinate extraction process is a cycle. A frame is taken from the video, players are detected
in this frame, and the real coordinates of these players on the real field are computed and saved in the
database. After this we move on to the next frame.

To make the detection easier and faster, player position information from the previous frame is used
to detect the players in the current frame. We make use of two rectangles to track each player: one
rectangle has the dimensions of the player and is centred on the player, the second bigger rectangle
is given such dimensions that the player cannot exit that rectangle in between two consecutive frames
(because of physical limitations).
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In the beginning, some user interaction is needed for initialisation. The user must specify the mapping
between the field in the perspective view of the video and the real field. This mapping will be used to
translate the detected player position from image coordinates to real physical coordinates on the field.
Next, because information from a previous frame is not available, the user has to initialise the system
by interactively placing (e.g. mouse click and drag in the image) the tracking rectangles on the players.
Then, the detection is done automatically (apart from some exceptions that will be discussed later in
this paper). The system after the initialisation phase is shown in Figure 3. The three players to be
tracked (left image) are indicated by the tracking rectangles. Their physical positions on the field are
computed and visualised in the “virtual” top view of the field (right image).
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Figure 3: The detection system after initialisation.

Using the tracking rectangles makes the detection faster and more robust because each player is
searched for only inside their own rectangle, and not in the whole frame image.

For each player the same detection process is applied. The image inside the bigger tracking rect-
angle is preprocessed (smoothing, contrast enhancement). Then image processing and object detection
algorithms are used for the detection of the player.

The algorithms used to detect a player in a rectangle employ different image processing techniques for
contrast enhancement, smoothing, edge detection (Sobel and Prewitt operators) and segmentation [2].
The actual detection algorithms are based on pattern matching, histogram analysis, dynamic thresh-
olding, etc. Their performance differs and is dependent on the image quality. The images on which the
tests were made are not of very high quality, because one of the objectives of our project is to keep the
whole procedure at low cost, so the images were taken with ordinary cameras.

The detection can be performed either on gray-scale or on colour images. One of the algorithms for
gray-scale images with its subsequent steps (a. initial image; b. noise elimination with a Max kernel
and enlargement of the object; c. gray scale stretching, contrast enhancement; d. binarisation, object
detection is straightforward) is exemplified in Figure 4.

Figure 4: Player detection in gray-scale images (a. initial image; b. noise elimination with a Max kernel
and enlargement of the object; c. gray scale stretching, contrast enhancement; d. binarisation).

An example of player detection algorithm for colour images is the detection by histogram comparison.
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The small detection rectangle parses the bigger rectangle, and for each position its colour histogram is
computed and it is compared with the reference histogram of the empty field. The position for which
the histogram is the most distant from the reference is considered to be the player.

In Figure 5 an example of the histograms for the reference and player rectangles is given. Histograms
are computed on the inner tracking rectangle, and displayed separately for each of the three colour
components (R, G,B). Reference image histograms are more peak-like because they are quite uniform
(green); player histograms are less uniform due to equipment color.

Hiztograms vizualzation
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Figure 5: Histogram comparison between the reference image (first row) and the player image (second
row).

Several metrics to compute the “distance” between two colour histograms were taken into consider-
ation. One is the Kullback—Leibner distance [1] that is widely used in probability distribution problems.
This is (n)

p(n
D = n) x log —=
(p,q) n;(p( ) xlog oos
where p and ¢ are two discrete distributions over the domain X.

In this case, the two distributions are the concatenated colour histograms (R,G,B) of the reference
(grass) and the player image at the current position of the detection rectangle.

However, because of the computational complexity of this metric, a simpler one was chosen:

D(RH,CH)= Y (|RHr[i] - CHr[i] + |RHgli] — CHgli]| + |RHb[i] - CHDb|)
i€[0,255]

where RHr, RHg, RHb are the R, G, B histograms of the reference (grass) image, and CHr, CHyg,
CHD are the R, G, B histograms of the detection rectangle at the current position.

After having obtained the position of the player in the current frame in the video, the mapping
to the real field coordinates is used to compute the player’s real position on the field. These real field
coordinates are then saved in the database.

The mapping function maps the perspective polygonal view of the scaled field onto the real rectan-
gular field. The user is required to graphically make the correspondence between the field lines in the
image and field projection during the initialisation phase.

Of course there are also some problems in the process and not everything goes smoothly from
one whistle to another. Player collisions make this task more difficult than it seems. Some algorithms
were developed to deal with several of the collision situations, but for some cases user interaction is still
needed. Figure 6 shows an example of how the software deals with the collision problem. The application
detects when a collision is about to occur (tracked players are lost) and displays a warning (Figure 6a).
If a collision has occurred (Figure 6b) the detection is stopped with the tracking rectangles in the last
known positions and the user has to reinitialise the colliding players.
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Figure 6: Player collision solving.

The algorithms for player collision solving are based on previous player positions, multiple cameras
information, player equipment colour. But if the colliding players overlap completely in the image, the
detection process cannot discriminate between them.

Collisions are detected from the intersections of the tracking rectangles. If the inner rectangles of
two players intersect more than a certain percentage (a threshold), a collision is signalled and the
corresponding solving algorithms are enabled.

One type of collision solving is to use two cameras surveying the same portion of the field. While for
one camera two players appear to collide because they are on the same line with the camera, the other
camera from a different angle can clearly differentiate between them.

One such situation is shown in Figure 7, as well as the way in which two cameras with different
orientations can solve this problem. Two players are tracked in this examples (each player’s number
is displayed at the bottom of the tracking rectangle; in Figure 7 the players with numbers 1 and 2
are tracked). Figure 7a shows the two players from the viewpoint of the first camera (the two players
are colliding). Viewing the same scene from the viewpoint of the second camera (Figure 7b), the two
players can clearly be discriminated. Figure 7c shows the real field positions of the two players, computed
using information from both cameras (here numbers in the figure specify the two cameras surveying the
corresponding regions; the two crosses show the player positions).

Figure 7: Collision solving with two cameras; a. first camera; b. second camera.

Even if players are not colliding, the two cameras are useful for a more precise computation of the
real player position on the field (player positions on the field are displayed in Figure 7c). Normally, there
are small errors in the mapping from image to real field, and these can be corrected a certain amount
by averaging in between the coordinates computed from the two different cameras (sensor fusion).
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4 Analysis based on the coordinates database

Once the coordinates are extracted, quantitative game analysis can be performed (different analysing
methods that can be priceless to soccer coaches), and a virtual reconstruction of the match can be made
for analysis, entertainment or commercial purposes.

All kinds of statistics can be calculated such as: field coverage, total distance run by a player, velocity,
acceleration, ball possession percentage, ball losses, etc.

Even tactics can be built in. There is, for instance, a claim that when you take the polygon that
wraps the defensive players (the “convex hull”) and calculate its centre of gravity, and you do the same
thing for the offensive players of the other team, you can determine, by the relative position of the body
mass point if there is danger for a counter-attack [3]. The coach can then be alerted about this situation
and give the team directions to be careful in the future. The player polygon can easily be drawn from
the player coordinates at each moment of the game, and displayed as in Figure 8.
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Figure 8: The player polygon (“convex hull”) is the smallest polygon that encloses all players of a team.

Another possible use of the coordinates is 3D replay. A situation can be replayed and the user can
have a look at the scenario from all angles (e.g. how did the goal-keeper see the ball).

A first scheme of what kind of analysis can be performed once the coordinates are extracted is given
below to emphasise the importance of this process. This is a kind of knowledge tree with respect to
possible kinds of analysis:

Analysis scope:

— per player

— per group of players
— attack
— midfield
— defence

—per team

—rper club

Time horizon:
— per phase
— per a priori defined game period
— per game
— over different games
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Statistics:
— ball possession per team
— time/position tensor
— tracking the line-up through a match (4:4:2 or 3:2:5 or 5:2:3)

Markov model:
— gives the a posteriori statistics of passes
— by deriving the Markov model of both teams:
— ball possession, loss and recuperation can be quantified
— per group of players a passing matrix can be made to show their complementarity

Goal keeper:
— visualise the goal attempts on his goal
— distant or close shots / good or bad keeper reactions
— preferential directions

Per individual player:

— physical condition

— run distance

— speed profiles
— double acceleration
— explosivity

— run lines

— position per unit of time

— strategy and tactical insight of the game:
— goes deep in the field
— works hard
— can anticipate well (e.g. positioning with respect to the others)

For the referee:
— track/monitor the referee performance
— position on the field in relation to field situations

This is only a coarse categorisation of possible analysis methods, and the elements mentioned above
will be detailed and completed.

5 Future work

In the future there will be two distinct approaches for the tracking. The use of fixed cameras has proven
to be useful and will be improved, but also moving cameras will enter the scene. The use of the moving
cameras is already tested in reality for ball tracking purposes. Here the pan and tilt of the camera is
measured using the optical mouse principle.

Another use for the moving camera is to determine the exact identity of a player after a collision
that may have caused a switch of identity. Therefore, the moving camera scans the field and if a player
whose identity is uncertain is found, the camera follows him until the back number can be read.
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Abstract

The traditional way of analysing soccer matches by coaches or whoever is interested in getting
statistics about them, is to take notes on a piece of paper or to make remarks about what happens
while watching the game.

This paper proposes a different approach to match analysis, utilising computers and the ap-
propriate software tools. VideoCoach® allows the user to annotate the match through easy-to-use
interfaces. The annotations are saved in a database. Match analysis and statistics are automatically
retrieved from the annotation database, video compilations can be made and analysis can be done.
This kind of analysis is not strictly bound to soccer, but the examples will be from this sport.

1 Introduction

The Canadian researcher Ian Franks proved that coaches only remember 30% of the game content
correctly. Even after going through a special training they do not do any better than 50%. As a con-
sequence, a trainer often misjudges certain situations. A quantitative and objective analysis of soccer
games, with the aid of computers, could therefore be a priceless advantage.

VideoCoach® is a tool we specially developed to assist coaches. Starting from a video of the game
and the software package VideoCoach©, an annotation of the game can be done after some initialisation.
From the annotation, statistics can be derived, compilations can be made and video analysis can be
done. The flow chart of the entire process is shown in Figure 1.

[mages WVideo Coach

Initialization

Video atialysis

| Compilations |

| Statistics |

Figure 1: Flow chart of VideoCoach®© process.
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2 Images

The images of the game can be recorded with an ordinary camera or directly taped from television.
They have to be digitised. We use Dazzle MovieStar [1] to deal with this problem. It can digitise input
from a VCR, directly from a camera or even from television. It writes the input to mpeg format (real
time) and the user can specify the bit rate. A quality of 12MB/minute is ideal because this is high
enough and one half of the play can be burned onto one CD-ROM for distribution. We tape 55 minutes
for each half to deal with extra time and camera set-up.

3 Initialisation

Before the annotation can start in VideoCoach®© there is an initialisation phase. The purpose is that the
coach has to decide what he or she wants to annotate (which actions, players, etc.) and how to annotate
(with the keyboard interface or the touch screen interface). An absolute advantage of VideoCoach®© is
that the labels can be chosen freely by the user, that is, the labels are not predefined by the program.

The first step is to define the teams. Therefore a team database is set-up and saved on the hard
disk. The team information can contain only the name of the team or can be more detailed including
the names of the players, the shirt numbers and the labels attached to the players.

What are those labels and why are they needed? As stated above, the purpose of VideoCoach® is
to help the trainer to remember the critical situations and to make it easy to reconstruct the situations
when analysing the match with the players. Using this tool, a coach can mark each situation that is
worth remembering. This marking is done by pressing a key (keyboard interface) or touching a button
on the screen (touch screen interface). The label behind the key or button is attached to the phase.
This can be “free kick”, “goal”, “fault”, “corner”, “throw in” or any other label that was defined by the
user. These labels thus define actions and are called action labels. There are also quotation labels (to
give a quantitative appreciation to an action), time labels (to identify the moment at which the action
occurred, these are automatically filled in by the program) and player labels (usually the player’s name,
to indicate which player did the action).

A coach can define different label sets. Standard label sets for each kind of annotation (e.g. team or
player) will be available for download in the near future. When the coach wants to analyse an individual
player he or she will need other action labels than when wanting to analyse a whole team at once. The
coach can combine the labels in any fashion, but before starting the annotation will need to select at
most one action label set and one quotation label set.

After defining the label sets, matches can be created. Just the two teams that are playing against
each other can be defined as a match, but we may also define the number of spectators, team line-up,
date and hour, as well as a whole collection of notes that are important to remember for later use.

4 The annotation

Once a game is created, it is possible to annotate it. This can be done while watching the game in real
time (the video is then linked afterwards) or otherwise. A label is attached to every interesting phase,
using a touch screen or the keyboard.

The use of the touch screen is developed for a quick and user-friendly annotation. Figure 2 shows
the interface. The yellow buttons are the labels. The label is written to the annotation list at the time
the button is pressed and a new line is started (one click thus results in one label). On the left there
is the video that is annotated and there are buttons to navigate through the video, start the first half,
second half, extra time and penalties. In the left corner the annotation list is shown.

By using the keyboard a combination of the different label sets can be made if wanted. So one line
in the annotation list can contain the time label, the player label, the actions made and the quotation.
Each label has a unique key attached to it. By pressing this key, the label is displayed on the screen.



198 E. Muresan, J. Geerits and B. De Moor

sport4s

Good pass

WWW_pd.com

[ fwe lael |
00:17= Throw in

00:11= Fault

00:09* Good pass

00:07* Good pass

00:04* Throw in

Figure 2: The touch screen interface.

The user specifies which label set defines a new line. When a label of this set is used, the annotation
line is written in the database and a new line is started.

The annotation results in a list containing all the labels, as shown in Figure 3. The list can be
ordered on time, action, player or quotation. The video fragment attached to every phase can be shown
by double clicking on the corresponding line. A compilation can be made from this list. For example, in
the screen dump all the actions of Crasson are selected. Figure 4 shows the corresponding compilation.

Belgium

Period Time | Action Player Quotation
-First half 00 Fault i
-Firgt half a0 Free kick
-First half Throw in ard
-First half ! Fault on Bertiand
-First half I3t  Throw in

-First half Fault
-First half Free kick
-First half Goal
-First half Fault
-Firgt_half 01-03 Goal

EECEEEROOER

Figure 3: The annotation list showing the labelled actions.

5 Video analysis and compilation

By just double clicking on the label in the label list, the video of the action behind each label can be
shown. By selecting the desired actions a compilation can be made. This way, an individual player can
get a video of his or her actions, ordered by action, time or appreciation. In Figure 3 all the actions of
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Bertrand Crasson are selected. This player’s actions are grouped in a compilation displayed in Figure 4.
The compilation can be played, deleted or written to a new mpeg file of the same quality as the original
one. The compilation can also be ordered on time, action, player or quotation. Extra information can
be added manually or automatically if wanted.

Make new videafile

Autornatically add info to action
T

1 -First half Thecwa i (¥ =
1-First half ult
1-Fi alf goal

Figure 4: The compilation from the selection made in Figure 3.

6 Statistics

Statistics are calculated automatically after the annotation is completed (Figure 5). The number of
times that every action occurred is calculated. From these occurrences the positively and negatively
evaluated ones are counted and displayed separately. The analysis can be done for every player, for the
whole team or for both teams. In Figure 5, it is done for the whole team.

-2 plavers - =

Fault Goal

Figure 5: Statistics calculated automatically from the annotation.
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Besides these statistics, sequence statistics can be calculated; for example, one can calculate how
many times action x was followed by action y (Figure 6) and this for several time intervals. This can
be useful, for example, to see how long the ball is kept in possession by the team after a free kick or a
throw-in. Figure 6 shows how many times a throw-in was followed by a free kick.

Thiaw in ~ | Followed byl{Lrry5En

1[5 1[5

3040 s 4060 5 B0-60 =

Figure 6: Sequence statistics show how many actions x are followed by actions y in different time
intervals.

7 Future work

In the future, the statistics and data collected during several games will be used to make predictions,
search for patterns and make a complete player database. Also a LUI (Language User Interface) for
labelling will be developed.

A downloadable version will be available soon. The downloadable version can be obtained from
www.sportds.com (not yet online). Those concerned can write to the authors to obtain VideoCoach®©.
Predefined VideoCoach®© label sets for soccer and other sports and in several languages will also be
downloadable from the website.
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Abstract

Data from the 2000 Australian Tennis Open are used to measure the advantage of serving with new
balls in both men’s and women’s singles. We discuss the main features of the men’s, women’s and
mixed doubles at the Australian Open in 2001. Data from a variety of sources are used to compare
the server’s advantage at Wimbledon, the French and the Australian Open.

1 Introduction

The Australian Open Tennis Championships are the first Grand Slam tournament of each calendar year,
and are held on “Rebound Ace” hardcourts in January at Melbourne Park, Melbourne.

The first Australasian Tennis Championships were played in 1905 at the Warehouseman’s Cricket
Ground (now Albert Reserve) in Melbourne. Men’s events only were played. Women’s events, mixed
doubles and junior boys’ events were first held in 1922, and junior girls’ events in 1930. In 1969, the
championships were open to amateurs and professionals. The championships were held each year at a
different, venue throughout Australia and New Zealand, up until 1972, when Kooyong became the home
of the Australian Open. The championships moved to Flinders Park (now Melbourne Park) in 1988.

The other grand slam events are the French Open, Wimbledon and the US Open. There is often
discussion about the differences in court surface and their effects on matches. In recent years, point-by-
point playing statistics have been collected and disseminated. The availability of such statistics allows
for many of the myths of tennis to be tested. For instance, Magnus and Klaassen [2, 3] use four years
of Wimbledon data to test some beliefs about tennis.

Point-by-point data is collected at the Australian Open on every court for every match (unless
technical difficulties occur). The point-by-point data for men’s and women’s singles matches in 2000
and the results for all matches were obtained in electronic form from the Australian Open organisers.
The authors were actively engaged in the collection of similar data in 2001 and 2002, and these activities
are discussed in Clarke and Norton [1].

Using this point-by-point data, the effects of new balls at the Australian Open, 2000, will be exam-
ined. A comparison is then made of service characteristics for non-tiebreak games and for tiebreak games.
Using data from a range of sources, a comparison of points won on serve at Wimbledon, 1992-1995 and
2001, the French Open 2001 and the Australian Open 2000-2002 is given. Finally, doubles (including
mixed doubles) have rarely been looked at closely from a statistical point of view. An overview of the
main features of men’s, women’s and mixed doubles at the Australian Open in 2001 is given.

*The authors would like to thank Chris Simpfendorfer and the staff of the Australian Open for their assistance in
providing statistical data.
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2 Is serving with new balls an advantage
at the Australian Open?

»

“Serving with new balls ...” is a familiar saying by tennis commentators today. The implication is that
they are an advantage to the server, but there is no discussion as to what this means. During a tennis
match, new balls are provided at the start of the warm up to the match, after the first seven games of
a match, and then after every subsequent nine games. Tiebreaks are counted as one game, even though
there are usually more points played in a tiebreak. At the Australian Open 2000, in the men’s singles
there were an average of 6.1 points played in an ordinary game, and 11.8 in a tiebreak, whereas for
women, there were an average of 6.5 points played in an ordinary game and 11.6 in a tiebreak. (This
compares favourably to the standard theoretical calculations by Pollard [4] of 6.5 (6.8) points played in
an ordinary game where the probability of winning a point on serve is 0.6 (0.5), and 11.7 in a tiebreak
when the probability of winning a point on serve is 0.5.)

Magnus and Klaassen [2] used point-by-point data from some of the matches at The Championships,
Wimbledon, and examined the effect of new balls. They had previously showed that the probability of
winning a point on service is the best statistic to measure service quality or dominance. If new balls
were an advantage to the server, then it would be expected that the dominance of service, measured
by the probability of winning a point on service, would decrease with the age of the balls. They used
point-by-point data from Wimbledon over the period 1992-1995, and were able to show that there was
no decrease in the probability of winning a point on service with the age of the balls. They suggested
that new balls may affect the way that points are won. There was evidence that the chance of getting a
first serve in increases with age of the balls, but this is counteracted by the chance of winning a point
given a good serve decreasing. They were hampered to some extent by not having data on all singles
matches.

Percentages of the characteristics for the following ages of balls:
Characteristic 1 2 3 4 5 6 7 8 9 All

First serves in 60.4 575 573 558 582 579 57.3 56.6 580 57.6
(0.9) (0.9) (0.8) (0.8) (0.8) (0.8) (0.9 (0.9) (0.9) (0.3
Second serves in 88.9 91.3 90.5 88.1 89.8 89.3 882 895 876 &9.2
(0.9) (0.8) (0.7) (0.8) (0.8) (0.8) (0.9 (0.8) (0.9 (0.3

Games won on 81.3 815 792 785 804 789 79.4 813 789 799
serve (1.8) (1.8) (1.7 (1.7 (1.7) (1.8) (1.8) (1.8) (1.9 (0.6)
Aces 8.9 8.4 8.6 8.5 7.7 8.3 8.9 7.8 9.0 8.4
(0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.2)

Double faults 4.4 3.7 4.0 5.3 4.3 4.5 5.1 4.6 5.2 4.6

0.4) (0.4) (0.3) (04) (0.3) (04) (0.4) (0.4) (04) (0.1)
Points won if first | 73.5 743 723 734 717 735 742 733 T7AT 734

serve in (1.1) (1.1) (1.0) (1.0) (1.0) (1.0) (1.0) (1.1) (1.1) (0.3
Points won on first | 44.4 42,7 41.5 41.0 41.7 426 425 414 433 423
serve (0.9) (0.9) (0.8) (0.8) (0.8) (0.8) (0.9 (0.9 (0.9 (0.3
Points won on 644 649 632 63.0 633 63.6 638 645 64.1 63.8
serve (0.9) (0.9) (0.8) (0.8) (0.8) (0.8) (0.9 (0.9) (0.9) (0.3

Table 1: Service characteristics for the 2000 Australian Men’s Singles Championships depending on the
age of the balls.

The data in Table 1 give the summary statistics for service characteristics for the men’s singles at
the 2000 Australian Open based on all points played, including points played during tiebreaks. The age
of the balls in games are from 1 (new balls) to 9 (old balls). New balls are taken for the warm up (five
minutes in total) to each match, and are then used for the first seven games of the match. So the age
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Figure 1: Service characteristics for the 2000 Australian Men’s Singles Championships depending on the
age of the balls.

of the balls in the first game of a match is set to three. Standard errors are given in parentheses. These
have been obtained by assuming all points are independent. The proportion of points won if the first
serve is in is the ratio of the number of points won on the first serve divided by the number of first
serves which are in. The proportion of points won on first serve is the ratio of the number of points won
when the first serve is in to the total number of points.

If new balls provide an advantage to the server, then we would expect the probability of winning a
point on service would decrease with increasing age of the balls. The percentages from Table 1 have been
graphed in Figure 1. There appears to be no consistent trend in any of the characteristics. In particular,
the percentage of points won on serve does not decrease with the age of the balls. The percentage of first
serves in and the percentage of points won on first serve are highest with new balls, but the percentage
of points won if the first serve is in is highest with the oldest balls.

Similar data and graph for the women’s singles are shown in Table 2 and Figure 2. Again no
clear trend appears. There is little evidence that age of ball affects any of the serving statistics. The
percentages of first serves in, games won on serve, points won if first serve is in, points won on first serve
and points won on serve is greatest, but not significantly, with balls being used in their first game.

Of interest is the fact that points won on first serve, points won on serve and games won on serve
start to decline as the age of the balls increases, but then rise again when the balls are at about age six.
This suggests a possible confounding effect due to tiebreaks. When points from tiebreaks were removed
from the data, there were still no trends evident.

It is impossible to compare statistics in tiebreaks for different ages of balls, as very few tiebreaks are
played with balls of certain ages. If a tiebreak is played in the first set, then the balls are of age 6. If a
tiebreak is played in the second set, then the balls could be of any age, except 2 and 8, depending on
the score in the first set. Of the 92 tiebreaks played in the men’s singles, 41 were with balls of age 6, and
only two with balls of age 1. For the women'’s singles, 11 of the 24 tiebreak games were played with balls
of age 6, and no tiebreaks were played with balls of age 2, 3 or 8. Figures 3 and 4 show the distribution
of tiebreaks against age of balls for the men’s and women’s singles events.
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Percentages of the characteristics for the following ages of balls:
Characteristic 1 2 3 4 5 6 7 8 9 All

First serves in 63.0 635 619 625 619 625 61.0 61.3 61.6 62.1
(1.2) (1.2) (1.0) (1.0) (1.0) (1.0) (1.1) (1.1) (1r1) (0.4
Second serves in 84.8 88.8 87.0 84.9 869 87.1 852 &6.8 86.3 86.4
(14) (1.3) (1.1) (1.2) (1.2) (1.2) (1.3) (L.3) (1L.3) (0.4

Games won on 69.9 67.7 654 64.0 625 69.0 673 63.6 654 659
serve (2.8) (2.9) (2.5) (2.6) (2.6) (2.6) (2.7) (2.8) (2.8) (0.9)
Aces 3.5 2.7 3.3 2.8 3.7 3.8 3.5 3.6 2.8 3.3
(0.4) (0.4) (0.4) (0.3) (0.4) (0.4) (0.4) (04) (04) (0.1)

Double faults 5.6 4.1 5.0 5.6 5.0 4.8 5.8 5.1 5.2 5.2

0.6) (0.5) (0.4) (0.5) (0.5) (0.5 (0.5) (0.5) (0.5) (0.2)
Points won if first 66.0 624 623 625 614 64.2 650 629 62.7 632

serve in (1.4) (1.5) (1.2) (1.3) (1.3) (1.3) (1.4) (14) (14) (0.5
Points won on first | 41.6 39.6 385 39.1 380 40.1 39.7 385 386 39.3
serve (1.2) (1.2) (1.0) (1.0) (1.0) (1.1) (1.1) (Lr1) (L1) (0.4
Points won on 58.9 57.1 56.5 55.7 559 586 57.3 56.2 574 57.0
serve (1.2) (1.2) (1.0) (1.0) (1.1) (1.1) (1.1) (1.1) (1r.1) (0.4

Table 2: Service characteristics for the 2000 Australian Women’s Singles Championships depending on
the age of the balls.
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Figure 2: Service characteristics for the 2000 Australian Women’s Singles Championships depending on
the age of the balls.

3 Comparison of tiebreaks and non-tiebreak games

Tiebreaks were introduced to reduce the chance of extremely long matches. All the grand slam events
have tiebreaks in the non-final sets, and the US open has a tiebreak in the final set. At the Australian
Open in 2001, a single tiebreak game replaced the third set in the Open Mixed Doubles. (In 2002, this
was extended to a super tiebreak—first pair to win ten points by two clear.) While tiebreaks remove
the possibility of a long advantage set, they increase the element of luck, and increase the importance
of points played. At 5-5 in a tiebreak, both players are within two points of winning the set, and every
second point will be a set point. This may cause players to play differently to a normal game. In addition,
players are serving in groups of two points, rather than complete games. This may also change their
usual serving pattern.

Table 3 compares the serving characteristics of men’s and women’s tennis in normal games and
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Figure 3: Age of balls in men’s singles tiebreak games, Australian Open, 2000.

=12
Z —
9.10
S 6
3 4
5 2 I
o LM [ =
1 2 3 4 5 6 7 8 9
Age of balls

Figure 4: Age of balls in women’s singles tiebreak games, Australian Open, 2000.

tiebreaks.

Both men and women appear to perform worse on service in tiebreaks than in normal games. Men
appear to serve more conservatively in the tiebreak, with a greater proportion of first and second serves
in, a smaller proportion of points won if the first serve is in (p-value < 0.001), a smaller proportion
of aces (p-value 0.013) and fewer double faults than for normal games. But the overall result is that
the percentage of points won on serve goes down, although not significantly. The picture is similar for
women, although the percentage of first serves in actually decreases in the tiebreak. Again, overall the

Percentage of the characteristics

Men Women
Characteristic Normal games Tiebreaks Normal games Tiebreaks
First serve in 57.6 (0.3) 58.6 (1.5) 62.2 (0.4) 58.3 (3.0)
Second serves in 89.2 (0.3) 90.5 (1.4) 86.3 (0.4) 90.5 (2.7)
Aces 8.5 (0.2) 6.2 (0.7) 3.3 (0.1) 1.1 (0.6)
Double faults 4.6 (0.1) 3.9 (0.6) 5.2 (0.2 4.0 (1.2)
Points won if first serve in 73.5 (0.3) 69.4 (1.8) 63.2 (0.5) 60.5 (3.8)
Points won on first serve 42.4 (0.3) 40.7 (1.5) 39.4 (0.4) 35.3 (2.9)
Points won on serve 63.9 (0.3) 62.1 (1.5) 57.0 (0.4) 55.4 (3.0)

Table 3: Serving statistics for Men’s and Women’s Singles, Australian Open, 2000.
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Percentage of points won on serve
Tournament Men Women
Wimbledon 1992 64.9 (0.4) 57.0 (0.6)
Wimbledon 1993 64.9 (0.4) 56.6 (0.6)
Wimbledon 1994 63.9 (0.4) 55.4 (0.6)
Wimbledon 1995 64.0 (0.4) 55.4 (0.6)
Wimbledon 2001 64.5 (0.3) 57.1 (0.4)
Australian Open 2000 63.8 (0.3) 57.0 (0.4)
Australian Open 2001 61.9 (0.3) 54.9 (0.4)
Australian Open 2002 61.7 (0.3) 54.4 (0.4)
French Open 2001 60.1 (0.3) 54.1 (0.4)

Table 4: A comparison of points won on service in singles at selected grand slam tournaments.

percentage of points won on serve goes down, although not significantly.

4 Statistical comparison of grand slam tournaments

Tennis player’s styles usually lie between two extremes. The serve volleyer attacks the net following a big
serve, and likes a fast court. Wimbledon, played on grass, is said to suit a serve—volleyer. The baseliner
stays back, has long rallies, and is suited to a slower court, where the serve is not such a big advantage.
The French Open, played on clay, is usually won by baseline players. The Australian Open is played on
hardcourt, and is said to be relatively even handed to baseliners and serve—volleyers. A common point
of discussion is the varying surfaces of the grand slam tournaments and the relative advantages they
give to the server.

Table 4 summarises the percentage of points won on service at three grand slam tournaments. The
data for Wimbledon 1992-1995 have been taken from Magnus and Klaassen [1], and the other data were
extracted from the websites www.wimbledon.com, www.ausopen.org, and www.rolandgarros.com. The
US Open does not take statistics on every court, and comparable data are not available.

The figures for Wimbledon are fairly consistent, although there appears to be a smaller percentage
of points won on serve in 1994 and 1995. Figures for the Australian Open in 2000 were similar to those
for Wimbledon, but there has been a significant drop in the percentage of points won on serve since
2000. As would be expected, the percentage of points won on serve at the French Open is less than that
for the other two grand slams, although the figures for women at the Australian Open in both 2001 and
2002 are not significantly different from the figure for the French Open in 2001.

Table 5 gives the serving characteristics for Wimbledon, 1992-1995, and the Australian Open, 2000.
For the men’s singles, at Wimbledon, a significantly larger proportion of first serves were in, a smaller
proportion of second serves were in, a larger proportion of double faults were served and a larger
proportion of points were won on first serves, than at the Australian Open. For the women, almost the
opposite is true. At Wimbledon, a smaller proportion of first serves were in, and a smaller proportion
of points were won on the first serve than at the Australian Open.

5 A first look at doubles

Table 6 gives an overview of some statistics related to doubles for the Australian Open Tennis Champi-
onships 2001, obtained from data available from the Australian Open website www.ausopen.org. Figures
in brackets are standard errors. Matches in men’s and women’s doubles were the best of three sets, first
two tiebreak and third advantage, except for the men’s doubles final, which was the best of five sets.
Matches in mixed doubles were the best of three sets, first two tiebreak, with the third set consisting
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Percentage of the characteristics

Men Women

Wimbledon  Australian Wimbledon Australian
Characteristic 1992-1995 Open 2000 1992-1995 Open 2000
First serves in 59.4 (0.2)  57.6 (0.3) 60.8 (0.3)  62.1 (0.4)
Second serves in 86.4 (0.2)  89.2 (0.3) 86.0 (0.3)  86.4 (0.4)
Games won on serve 80.8 (0.4)  79.9 (0.6) 63.4 (0.7)  65.9 (0.9)
Aces 82(0.1)  84(0.2)  31(0.1)  3.3(0.1)
Double faults 55(0.1)  46(0.1)  55(0.1)  5.2(0.2)
Points won if first serve in 73.3(0.2) 73.4(0.3) 62.2 (0.4) 63.2 (0.5)
Points won on first serve 43.6 (0.2)  42.3 (0.3) 37.8(0.3) 39.3(0.4)
Points won on serve 64.4 (0.2) 638 (0.3)  56.1(0.3)  57.0 (0.4)

Table 5: Summary of men’s and women’s singles service characteristics for Wimbledon 1992-1995 and
the Australian Open 2000.

of a single tiebreak game. Unfortunately the statistics of seventeen of the ladies doubles matches are
missing, but an estimate of the overall statistics based on simple proportions has been given. There is
a fairly good agreement between men’s and mixed doubles in terms of statistics. There are significant
differences between these and women’s doubles in the percentage of aces, percentage of first serve points
won, percentage of second serve points won and overall percentage of points won on serve. However, the
percentage of tiebreak sets played in the first two sets is similar in women’s doubles and mixed doubles.
Generally, the percentage of points won on serve is higher in the mixed, which leads to a larger average
number of points played in a tiebreak and a smaller number of points in a normal game.

In comparison with singles events (2000 data), the men get significantly more first serves in in doubles,
but serve half the number of aces, and win less points if the first serve is in. The same differences show
between women'’s singles and doubles, but are not significant. In both men’s and women’s doubles (in
2001), there is a higher proportion of points won on serve compared to the corresponding singles events
(in 2001), but this difference is not significant.

6 Conclusion

There is now a range of data available for analysing tennis. This allows some of the folklore of tennis
to be placed under the statistical microscope. Here we have shown the supposed beneficial effects of
new balls to the server are largely illusory. However, there is evidence to suggest players alter their
serving patterns during tiebreaks. The data can also be used to compare the different tournaments.
Such comparisons highlight the difference in men’s and women’s tennis, particularly in relation to the
performance on serve. When comparing Wimbledon and the Australian Open, the percentage of first
serves in, games won on service, points won on serve and points won on first serve all move the opposite
way for men than for women in going from one tournament to the other. As expected, the percentage
of points won on serve is lower in the French Open tournament than the Australian Open, but the
magnitude of the difference is not great, particularly for women’s tennis. We have also looked at some
doubles data. As the less glamorous events, doubles has received little attention in the literature, yet
there is much potential gain from its study. Mixed doubles data in particular provides the opportunity
to calibrate some of the differences in standard between the men’s and women’s game.

However, there is still some progress to be made in ensuring a greater degree of uniformity of data
collection and dissemination at the various grand slam tournaments, and even between events at the
same tournament. It would also improve the standard of analysis if more of the point-by-point data
were released as a matter of course. This would allow a deeper analysis. Topics such as differences in
the backhand and forehand sides, independence of points, could then be investigated.



Serving up some grand slam tennis statistics

Characteristic Men’s doubles! ~ Women’s doubles Mixed doubles?
Number of matches 63 63 31
Number of 4-set matches 1
Number of 3-set matches 29 25 9
Number of 2-set matches 32 38 21
Number of sets 155 151 60**
Number of tiebreaks 28 9 11 (first two sets)
9 (third set)

Total games 1574 1380 599
Average no. of games per set

(excluding third set of mixed) 10.2 9.1 9.8
Average no. of points in tiebreak 11.9 11.2 13.0
Average no. of points in a game

(excluding tiebreaks) 6.3 6.6 5.9
Server points won 6295 3841* 2271
Total points 10002 6936* 3603
First serves in 6452 4588* 2314
% first serves in 64.5 66.1* 64.2
Total aces 375 159* 151
% aces 3.7 (0.2) 2.3 (0.2)* 4.2 (0.3)
Total double faults 429 309%* 158
% double faults 4.3 (0.2) 4.5 (0.2)* 4.4 (0.3)
1st serve points won 4508 2805* 1624
% 1st serve points won 69.9 (0.6) 61.1 (0.7)* 70.2 (1.0)
% 2nd serve points won 50.3 (0.8) 44.1 (1.0)* 50.2 (1.4)
% points won on serve 62.9 (0.5) 55.4 (0.6)* 63.0 (0.8)

2one walkover, two matches missing statistics.
**Does not include third set tiebreaks.

Lone walkover.
*Estimates only: 17 matches missing statistics.

Table 6: A comparison of doubles events at the 2001 Australian Open Tennis Championships.
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Abstract

The creation of good match schedules for a sporting league is a combinatorially complex task.
Constraints relating to equity, the media, crowd safety, and team and ground requirements make
this a difficult task. The process we will discuss in this paper for the creation of round-robin and
partial round-robin match schedules involves three steps. The first is to create home and away
pattern sets providing a pattern of home and away games for each team. Next is the creation of
basic match schedules, where games are assigned to the pattern sets. Finally teams are assigned to
the rows in the basic match schedule. This creates several possible solutions, one of which is selected
by the league. Integer programming optimisation models and solution processes for each step will be
discussed. Examples of applications to the National Soccer League, the Australian Football League
and the South Australian National Football league will also be discussed.

1 Introduction

Schedules for sporting leagues come under a lot of scrutiny from teams and fans. It is important that
the schedules are fair for all teams. Teams and the leagues they are a part of also have many constraints
on the schedules, such as maintaining or increasing gate receipts, and having traditional games always
played in the same round each year. The media can also have an impact on schedules since their objective
is to have a large audience which requires games between popular teams. There are many different groups
that place constraints on the schedule and the problem of finding a good schedule can be difficult.

At present, many sporting schedules are created by hand. The advantage of this is that many
constraints can be met by dealing with them first. Traditional games can be fixed initially as well as
other team preferences. The problem comes when the fairness and quality of the schedule is analysed.
Situations such as a team having to visit three different states in three consecutive rounds, or playing
a majority of their away games in the last half of the season arise and are inequitable. These situations
would not be so bad if all teams had similar schedules. However, it often happens that while one team
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has a situation such as the ones described above, other teams may always alternate their home and
away games, or only have to travel interstate once or twice during the entire season. Unfortunately, a
fair schedule is difficult to create by hand. It can also be difficult to meet all constraints.

Many different mathematical approaches to the problem of constructing match schedules have been
explored. It has generally been accepted that a good way to solve the problem is by splitting it into
smaller parts. An example of this is to decide first whether each team plays at home or away in each
round and assign games later. Methods such as this have been used to schedule the Dutch Football
League [9], the Atlantic Coast Conference for basketball in the USA [6] and major [1] and minor [8] league
baseball. However there are also other approaches that have been successful, [2]. The connection between
timetables and graph theory has provided some useful theorems on the existence of timetables, [5].
Constraint programming has been used more recently to solve the problem and has proved successful, [4].
Due to the diversity of leagues and competitions, one method may not be suitable for all. This paper
describes a three step process to generate high quality sporting schedules. In Section 2 we discuss the
generation of patterns and pattern sets which are used as a basis for the schedule. Models for generation
of quality pattern sets are discussed in this section. In Section 3 we discuss models for assigning team
numbers to the home and away games specified in the pattern sets. This results in a Basic Match
Schedule (BMS) or timetable. In Section 4 we present a model for the assignment of teams to the team
numbers, based on team preferences and requirements. Section 5 discusses the concept of carry over
which impinges on the quality of a match schedule, and finally in Section 6 we discuss examples taken
from the National Soccer League, the Australian Football League (AFL) and the South Australian
National Football league (SANFL). Issues relating to the creation of double and partial round-robin
schedules are also discussed in this section.

2 Generation of pattern sets

2.1 Home and away patterns

The first step in the process of creating a match fixture schedule is to generate appropriate home and
away patterns for each team over the entire season. Initially teams are regarded as anonymous and it
is not until the last step in the process (see Section 4) that actual teams are assigned to a number.
We assume that there are an even number of teams given by 2n. When this is not the case in practice,
an extra team is created, and matches against this team represent a bye. A round-robin tournament
is one in which 2n — 1 rounds are played with each team playing each other team exactly once either
at home or away. In a double round-robin competition the 2n — 1 rounds are repeated but with the
home or away venues reversed, giving a total of 4n — 2 rounds altogether. The actual number of rounds
played in a competition is dependent on a number of factors, which include seasonal time limits, revenue
generation, and the physical nature of the sport. For example in a 16-team soccer competition a double
round-robin tournament consisting of 30 rounds may be appropriate. In the first half of the season each
team plays each other team once (15 rounds) in a series of home and away games. In the second half of
the season these games are repeated but with the home and way components reversed. Such a schedule
of 30 home and way games would not be feasible in certain other sports however. For example in the
AFL competition, the physical nature of the sport would prevent this number of games being played,
and in their 16-team competition only 22 rounds are played. We call such a competition in which only
a fraction of one complete set of rounds is played a partial round-robin competition.

A home and away pattern involving 2n teams is a sequence of 2n. — 1 0’s or 1’s, where a 0 represents
an away game and a 1 represents a home game. Certain restrictions apply on the structure of a feasible
pattern. For a round-robin competition involving 2n teams it is usual to require either n — 1 or n home
games in the pattern. This will then balance out to exactly 2n — 1 home games in a double round robin
competition. In a partial round-robin competition the total number of rounds is normally chosen as
an even number to enable an exact balance of home and away games. Appropriate patterns must be
generated to ensure this. In addition to these restrictions, patterns will be subject to certain quality
constraints. We call a break an unbroken sequence of either home or away games, for example 1 1 1



212 D. Panton, K. Bryant and J. Schreuder

or 0 0. In the first sequence the break is of length 2, whereas in the second sequence the break is of
length 1. Too many breaks, or breaks that are too long are seen as undesirable. Note that a break of home
games of length 2 which might be seen as desirable in the first half of the schedule becomes a break of
away games of length 2 in the second half of the schedule for a double round-robin competition. Breaks
are unavoidable for any competition of realistic size in which an even number of teams are involved.
When an odd number of teams are involved it is possible to construct pattern sets in which no breaks
occur ([5]). For an even number of teams only two distinct patterns are possible without breaks. To
illustrate, consider a 16 team competition for the first 15 rounds. The only two possible patterns without
breaks are
101010101010101 and 010101010101010.

It is a straightforward process to generate all patterns with only one break of length 1, i.e. either 1 1 or
0 0. For a double round-robin competition we need only generate patterns for the first 2n — 1 rounds.
Patterns with only one break of length 1 in the first 2n — 1 rounds will always result in three breaks
of length 1 when put together as a double round-robin pattern however, since an additional break is
unavoidable at the interface. In fact certain patterns, notably those commencing with either 1 1 or 0 0
must be avoided to prevent breaks of length 2 at the interface, since in these cases patterns will either
end in 0 or 1 respectively. Thus patterns in a full double round-robin competition will have either no
breaks or at least 3 breaks of length 1 over the 4n — 2 rounds. While it is desirable to keep the number
and size of the breaks as small as possible, other factors may influence what patterns are admissible.
These will be discussed in a later section.

For partial round-robin competitions the situation is slightly more interesting since balancing the
number of home and away games is not guaranteed. We will again use the 16 team, 22 round competition
to illustrate. If the first seven rounds in the 15 round pattern are to be used again in their complementary
form to make up rounds 16 to 22, each 0 and 1 in this section must be counted as a home game. Thus
to balance the competition with exactly 11 home games we must ensure that there are exactly four
home games in rounds 8 to 15. Patterns with no breaks in rounds 8 to 15 will automatically ensure
this. Patterns with only one break of length 1 which occur in rounds 8 to 15 however will either have
too few (10) or too many (12) home games. This can be avoided by allowing a break of length 1 to
commence only in the first seven rounds. These patterns will as before have three breaks of length 1
over 22 rounds. An alternative and potentially better quality option is available in this case however. If
no breaks are allowed in the first seven rounds but two breaks of length 1 are allowed in rounds 8 to 15
then patterns with only two breaks in 22 rounds can be generated. It is straightforward to generalise to
any partial round-robin competition which contains an even number of rounds.

2.2 Pattern sets

Patterns are used as building blocks for creating pattern sets. A pattern set is the framework of home
and away matches on which the complete match fixture schedule is built. For a competition having 2n
teams a pattern set is a 2n x (2n — 1) array in which each row in the array is a feasible pattern as
determined by the competition requirements. Necessary conditions for pattern sets are:

(i) each row in the array must contain either n — 1 or n 1’s;

(ii) each column in the array must have exactly n 1’s and therefore exactly n 0’s since each column
represents a round in which a balanced number of home and away games are played;

(iii) patterns cannot be duplicated since this prevents the two teams associated with these patterns
from playing each other at all (either at home or away) in any round.

In addition, other desirable features of the pattern set are:
(iv) there are exactly two rows with no breaks;

(v) there are at least two pairs of rows which are complementary.
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Condition (iv) may be important when scheduling matches between pairs of teams who cannot both
play at home in the same round. This situation will be revisited in a later section.

A graph-theoretic analysis of pattern sets can be found in [5]. Optimisation models are well docu-
mented for creating pattern sets (see for example [6]). We describe a set partitioning model which can
be dynamically used to generate all feasible pattern sets for a given basis set of patterns P.

Let

_J 1, if pattern ¢ is chosen,
v 0, otherwise,

where ¢ € P. Let ¢; be the cost of each pattern in P. Costing can be based on the number and length
of breaks in each pattern. Then we wish to

minimise Z CiT; (1)
subject to Zakimi =n, forallk=1, ..., 2n—1, (2)

i
and Z x; = 2n, (3)

where k£ is an index for the rounds and ay; = 1 if pattern i has a 1 in round k. The objective is to create
the best quality pattern set. Constraint (2) ensures that each column in the pattern set has exactly n
home games, while constraint (3) ensures that there are exactly 2n rows chosen in the pattern set. In
general there are several possible pattern sets for a given set of patterns P. If we let S’ be the current
pattern set, then addition of the constraint

Z z; < 2n (4)
jeS’

will prevent this pattern set from recurring. These constraints are progressively added to the model
until no feasible solution is found, in which case all feasible pattern sets have been generated.
An example of a pattern set for six teams and five rounds is shown in Table 1.

Team Round
1 1 0 1 1 0
2 0 1 0 0 1
3 1 0 1 0 1
4 0 0 1 0 1
5 1 1 0 1 0
6 0O 1 0 1 0

Table 1: Home and away pattern set for six teams and five rounds.

3 Creating the basic match schedule

Stage 2 in the generation of round-robin tournaments is to construct the Basic Match Schedule (BMS),
often referred to as the timetable, in which team numbers (but not team names) are assigned to a pattern
set, together with all matching home and way games. An example of a BMS for the pattern set given
in Table 1 is shown in Table 2.

Note that in this BMS there are exactly three home and three away games in each round, and that
for each placeholder team there are either two or three games played at home in five rounds.
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Team Round

1 +2 -4 46 +3 =5
-1 +3 -5 -6 +4
+5 -2 +4 -1 +6
-3 -6 +2 -5 +1
+6 +1 -3 +4 =2
-4 +5 -1 +2 =3

DU W N

Table 2: A Basic Match Schedule based on the pattern set in Table 1. A 4+ denotes a home game and a
— denotes an away game.

The process of withholding the identity of the teams at this stage has been used in several cases (see
for example [6], [9]). It is argued that this approach allows for a more flexible assignment of teams in the
last stage, taking into account factors which are hard to define in terms of hard constraints. A contrary
view is expressed by Henz in [4] who argues that many such constraints may already be required to
generate suitable pattern sets and basic match schedules and that the identity of the teams relating to
these constraints may be lost in the final stage.

We create the basic match schedule using the optimisation model described below. Consider a pattern
set derived from the first stage, having 2n rows and 2n — 1 columns. This pattern set is stored as the
array (p;r) where i is an index for each pattern or placeholder team and k is an index for each round.
We now define

o {1, if pie = 1 and pjp = 0,0 # j,
! 0, otherwise,

with

1, if Qijk = 1,
Tijk = .
0, otherwise.

Then

minimise Z QijkTijk
3,5,k
subject to Z(aijkl“ijk + ajir zji) =1, foralli <j, (5)
k

> agrwige =1, forall j, k, ©
i

Zaijkl‘ijk =1, foralli, k. (7)
J

This model provides solutions for the first 2n — 1 rounds. Their mirror or complementary solutions
may be used for the next 2n — 1 rounds in a double round-robin tournament. Constraint (5) ensures
that in the first k& rounds, teams i and j play each other once, either at home or away. Constraint (6)
applies only to those teams j which have a home game in round k. For these teams, this constraint
ensures that team j plays only one home game in round k. Constraint (7) applies only to those teams
which have an away game in round k. For these teams, this constraint ensures that team i plays only
one away game in round k. The objective is superfluous in this model since we are seeking as many
feasible solutions as possible. For each pattern set, once a feasible solution is found, we add a constraint
which prevents this solution from recurring, and continue until all feasible solutions have been found.
It is interesting to note that a feasible BMS cannot always be found for every pattern set. Necessary
and sufficient conditions for the existence of a BMS are unknown at this stage. There are a relatively
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small number of pattern sets admitting feasible solutions, as shown in Table 3. However, in practice,
the number of alternative schedules for each feasible pattern set provides a large number of BMS’s for
all practical sized problems.

Number | Number of | Number of feasible
of teams | pattern sets pattern sets
4 0 0
6 1 1
8 4 2
10 15 4
12 56 10
14 207 17
16 752 38

Table 3: The number of pattern sets and those which admit feasible BMS’s, under the assumption that
there are no breaks of length 3 or longer and at most two breaks of length 2 in a double round-robin
competition.

4 Assigning teams to the Basic Match Schedule

At this stage one or more Basic Match Schedules have been chosen from the many that have been
generated by the process described above. These are typically chosen by the competition organisers and
are then given to the individual teams who are asked to rank the team numbers (identified by the rows
in the BMS) in their order of preference. Team preferences come into account at this point since a team
will not choose a team number which is in conflict with their preferences. For example, team A may
wish to play at home in a certain round and hence will not rank a team number which plays away in
that round. It may not be possible for every team’s preferences to be accommodated and it may be
necessary for some teams to have only some preferences met. In addition, it may be possible to meet
more preferences by using a different BMS.

A factor that might influence team ranking is safety constraints that dictate when certain teams
can or cannot play each other. This is more of a factor with soccer schedules in FEurope. It may also
be necessary for pairs of teams to be matched in a complementary sense, where team A and team B
cannot both play at home in the same round. This may occur for example if the two teams use the
same ground, or if gate receipts are an issue. Thus for example teams 1 and 2, 3 and 6, or 4 and 5 are
complementary in Table 2. It may be necessary to have more than one complementary pair, and not
every BMS will accommodate this.

At this point we have at least three possible ways of assigning teams to the row numbers in the
BMS. A common choice is to do this manually since in many situations there is a complex set of
constraints that are to be met. An alternative used in [6] is to enumerate all possible permutations
of teams and to check each one against the constraints. While this may be possible with ten or fewer
teams, it becomes impractical beyond this number. The method we describe employs an optimisation
model. All preferences are set up as shown in Table 4.

Team preferences are grouped in clusters. For example team A prefers only lines 2 or 4, while teams
B and C together must have either lines 1 and 3 or lines 2 and 4. These may be complementary lines,
for example. Finally teams D and A together must have either lines 1 and 2 or lines 1 and 3. Each
column represents a possible assignment and can be costed according to preferences. We use a cost of
zero for the most preferred team number(s) with increasing cost for the rest. It is desirable to minimise
the cost, giving the objective

minimise Z Cim; (8)
i
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J Cluster
i A B+C | D+ A | Sum
BMS | 1 1 1 1 1
2 11 1)1 1
3 1 1 1
4 1 1 1
Club | A |1 1 1 1 1
B 1 1 1
C 1 1 1
D 1 1 1

Table 4: Clusters for team assignment

where ¢; are the costs of each team number for each team. Clearly each team can receive only one team
number, and each team number can only be assigned to one team. This means that as shown in Table 4
we want each row to sum to 1, giving the constraint

Zaijxj = 1, for all ’L., (9)
J

where a;; is 1 if cluster j uses team number i and 0 otherwise. In order to ensure that each team is
assigned to only one team number the lower part of Table 4 includes a row for each team (A, B, C, D)
with a 1 in each column representing a team number combination. Again, these must sum to 1 as shown
in the lower half of this table. This can be ensured using the constraint

> by =1, foralli, (10)
J
where b;; is 1 if team 4 is in cluster j and z; is 1 if column j is chosen and 0 otherwise.

5 Minimising carry over

Each team has an effect on each other team by playing against that team. It is reasonable to expect
that a team can be demoralised by playing against a hard team or spurred on by playing against an
easy team. The effect on each team is balanced out in a round-robin tournament since each team plays
each other team the same number of times. However, there is also an effect that is passed on to the
team which is played the following week. For example if team A plays against team B in round 1 and
then team A plays against team C in round 2, team C will receive an effect from team B. If team B is
a hard team, it is likely that team A would lose that game. Thus, when team A plays against team C,
team A may have a diminished chance of winning. On the other hand if team B is an easy team, team A
may have an enhanced chance of winning against team C. Some competitions require that no team will
play two hard teams in a row, and will decide which teams are rated as hard. Nemhauser and Trick [6]
faced this situation while devising a schedule for the Atlantic Coast Conference Basketball competition.

The carry over effect that is of concern here occurs when more than one team plays two particular
teams consecutively (see [3]). Once again, if team A plays against teams B and C consecutively and
team D also plays teams B and C consecutively, then team C receives two effects from team B. Carry
over effects of this sort are most obvious when there is an odd number of teams and therefore there is
a bye each round. If team A has a bye and then plays team C, and team D has a bye and then plays
team C, then team C may experience some carry over effect (although there may be some debate as to
whether this is positive or negative). The carry over effect due to a team is not quite so obvious but still
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effective. Table 5 shows a six-team five-round competition with teams 1, 2 and 6 all playing teams 5 and
3 consecutively. The effect in this case is on team 3. It has to play three different teams immediately
after these teams have played team 5. If team 5 is hard, team 3 has an advantage, whereas if team 5 is
easy, team 3 has a disadvantage.

Team Round
1 -6 +5 -3 -4 +2
2 -4 46 -5 43 -1
3 -5 +4 +1 -2 46
4 +2 -3 -6 +1 =5
5 +3 -1 +2 -6 +4
6 +1 -2 +4 +5 -3

Table 5: A Basic Match Schedule showing the carry over effect in bold for team 3.

It is theoretically possible to add constraints to the BMS model to prevent this carry over effect
from occurring. However, for a 14-team competition this requires the addition of the order of 10® linear
constraints. It is very likely that no feasible solution would be found, requiring the weakening of these
constraints in a progressive manner. A far more practical approach is to identify carry overs in the
generation of alternative BMS’s and use only those BMS’s which have a relatively low total carry over
score. It has been proven by Russel [7] that a BMS with zero carry over is possible when the number of
teams is a power of 2. Russel also gives a method for construction of a schedule in this case.

6 Application to round-robin and partial
round-robin tournaments

Three examples will be discussed in this section. The first is a competition containing 14 teams in a
double round-robin. In this case the application of the processes discussed above is relatively straight-
forward. The second and third examples are partial round-robins in which local rules and historical
constraints play a major role in the match schedule construction process. These examples are based on
preliminary work done for Soccer Australia, and the SANFL. This work precipitated interest in AFL
match schedules; however, no official contact has been made with this organisation.

6.1 Double round-robin schedule

Consider a competition with 14 teams in which each team plays each other twice, giving a total of 26
rounds. A number of basic match schedules can be generated in this case. One example is given in Table
6 with only the first 13 rounds displayed. The second half of this schedule is a mirror image of the first
with home and away games reversed, and taking this into account there are a total of 18 away breaks
and 18 home breaks. There are no breaks of length 2 or longer. The number of carry overs in this case
is 76.

The assignment of teams to the team placeholder positions could be done manually, or using the
model described above.

6.2 A partial round-robin with an even number of teams

In the official current (2002) season match schedule for the AFL there are a total of 47 away breaks;
49 home breaks; ten breaks of length 2 and a reasonable number of carry overs. We have attempted
to create an alternative AFL schedule. Of the 50 pattern sets generated, not all gave feasible BMS’s,
but a sufficient number of quality usable BMS’s were available. To be usable it is necessary that there
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Team 1 2 3 4 5 6 7 8 9 10 11 12 13
1 -9 +8 —11 +12 -7 +6 -5 -2  +10 —4 +3 -—-13 +14

2 -14 +13 -12 +11 -10 +7 —6 +1 -5 -3 +9 —4 +8

3 —-13 +9 -14 +10 -—-11 412 -7 +5 —6 +2 -1 -8 +4

4 -8 +10 -9 414 -12 +13 -11 +6 -7 +1 -5 +2 -3

) -12 +14 -13 +7 -6 +11 +1 -3 +2 -8 +4 -10 +9

6 -10 +11 -7 +13 +5 -1 +2 —4 +3 -9 +8 —-14 412

7 —11 +12 +6 -5 +1 -2 +3 -8 +4 =14 410 -9 +13

8 +4 -1 -10 +9 -13 +14 12 +7 -11 +5 —6 +3 -2

9 +1 -3 +4 -8 —-14 +10 -13 +11 —12 +6 -2 +7 -5
10 +6 —4 +8 -3 +2 -9 -14 +13 -1 412 -7 +5 11
11 +7 —6 +1 -2 +3 -5 +4 -9 +8 13 +14 -12 +10
12 +5 -7 +2 -1 +4 -3 +8 —14 +9 -10 +13 +11 —6
13 +3 -2 +5 —6 +8 —4 +9 -10 +14 +11 12 +1 -7
14 +2 -5 +3 —4 +9 -8 +10 +12 13 +7 11 +6 -1

Table 6: First half of a double round-robin competition for 14 teams. Breaks are shown in bold.

are at least two complementary pairs of teams to accommodate the Adelaide Crows and Port Power,
and the West Coast Eagles and Fremantle. This requirement relates to revenue generation, since it is
not desirable for both local teams to play at home in the same round. In addition it is essential that
these pairs of teams play each other in the first seven rounds since these rounds must be repeated (in
a complementary sense) for the last seven rounds. Compliance with these conditions alone, at the same
time maintaining a quality schedule, is a nontrivial task if a manual match schedule construction process
is being used. Using the techniques discussed in Section 2, we have generated the match schedule shown
in Tables 7 and 8. This schedule has only 16 away breaks; 16 home breaks, and no breaks of length 2
or higher. The total number of carry overs is 87, which is relatively good. Thus the total number of
breaks has been dramatically reduced. It should be noted, however, that we have not had access to team
preferences and other possible constraints which may affect the quality of the finished schedule.

Team 1 2 3 4 5 6 7 8 9 10 11
1 =7 +9 -4 -2 +15 -13 +14 +11 -6 +12 -3
2 —-10 +11 -6 +1 -9  +4 -7 +3 —-16 +15 —14
3 -3 +8 —-10 +11 -6  +9 -12 -2 +7 —13 +1
4 -9 +7 +1 -14 +13 -2 415 +6 —11 +8  —12
5 +3 -15 -8 +6 —-10 +12 —-11 -16 +13 -7 +9
6 +14 -13 42 -5 +3 16 +8 —4 +1 -10 +7
7 +1 -4 413 -15 +16 -—14 +2  +12 -3 +5 -6
8 +16 -3 +5 +10 -12 +11 -6 —-13 +9 -4 415
9 +4 -1 +14 -13 +2 -3 +16 -15 -8 +11 )

10 +2 =16 43 -8 45 =15 +13 -14 -12 +6 411
11 +15 -2 416 -3 +14 =8 +5 -1 +4 -9 -10
12 +13 -14 415 -16 +8 =5 +3 -7  +10 -1 +4
13 —12 +6 =7 +9 -4 +1 -10 +8 -3 +3 —16
14 -6 +12 -9 +4 =11 47 -1 +10 -15 +16 +2
15 —11 +5 —12 +7 -1 +10 —4 +9 +14 -2 -8
16 -8 +10 -11 412 -7 46 -9 +5 +2 -—-14 413

Table 7: First eleven games of a proposed AFL match schedule for 2002. Breaks are shown in bold.
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Team 12 13 14 15 16 17 18 19 20 21 22
1 +10 -8 +16 -5 47 -9 +4 +2 15 +13 14
2 +5 —13 +8 -12 410 -—-11 46 -1 +9 -4 47
3 -15 +4 -14 416 +5 -8 +10 -11 +6 -9 +12
4 +16 -3 +5 =10 +9 -7 -1 +14 -13 42 =15
5 -2 +14 —4 +1 -3 +15 +8 -6 +10 -12 +11
6 11  +12 -9 415 -—-14 413 -2 +5 -3 +16 =8
7 +8 —11 +10 -9 -1 +4 -13 +15 -16 +14 =2
8 -7  +1 -2 +14 -16 +3 -5 —-10 +12 11 +6
9 +12 —-10 +6 +7 -4 +1 -14 +13 -2 43 -16

10 -1 +9 =7 +4 -2 +16 -3 +8 =5 +15 -13
11 +6 +7 -12 413 -15 +2 —16 +3 -14 48 =5
12 -9 -6 +11 +2 -13 +14 -15 +16 -8 +5 -3
13 +14 +2 -15 —-11 +12 -6 +7 -9 +4 -1 410
14 -13 -5 +3 -8 46 =12 49 -4 +11 -7 +1
15 +3 -16 +13 -6 +11 =5 +12 -7 +1 =10 +4
16 -4 +15 -1 -3 +8 -10 +11 -12 +7 -6 +9

Table 8: Second eleven games of a proposed AFL match schedule for 2002. Breaks are shown in bold.

6.3 A partial round-robin with an odd number of teams

In the SANFL, nine teams play each other at least twice in a season. The SANFL program is a partial
round-robin competition of 23 rounds, with the first 18 rounds making up a double round-robin. The
additional five rounds create complications which do not occur in a simple double round-robin. For
equity purposes it is essential that each team has the same number of byes in a season, and for this
reason an additional four byes must be scheduled so that each team has exactly three. This is done by
creating two extra byes in each of two rounds within the program, giving 27 byes in total between the
nine teams. These must be strategically placed so that byes for teams do not occur too close together,
and multiple bye rounds are not too close to either the start or end of the season. A further major
constraint relates to the additional games played in the last five rounds since this requires that there are
four teams that each team must play three times in a season. This must be done in such a way that a two
year rotational schedule is satisfied, while at the same time balancing home and away conditions. Many
other issues must also be addressed, for example the use of neutral grounds, availability of grounds and
special team requests. In particular the Port Adelaide Magpies request that as far as possible, when
Port Power are at home their games are away, and vice versa. Thus while the generation of a BMS using
the techniques discussed in this paper provides a quality basis for the match program, a great deal of
manual manipulation is required to create the final result.

7 Conclusions

In this paper we have discussed many of the major practical issues involved in generating a match
program for a sporting competition where round-robin rules apply. A three step process is described in
which IP optimisation models are used to create sporting schedules. While these optimisation models
play an important part in the schedule generation process, our examples illustrate that there are many
other factors which are difficult to formalise in a mathematical model which impinge on this process.
Nevertheless we have shown that IP optimisation models can be very effective in creating basic pattern
sets and Basic Match Schedules from which quality schedules can be developed.
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Abstract

The International Tennis Federation has recently approved a range of new tennis scoring systems. In
this paper we report the effect of these changes on various measures such as the average number of
points played in a match, the standard deviation of the number of points played, and the probability
that each player wins. Other possible scoring systems are also considered. We identify those best-
of-five short sets systems that are a reasonable alternative to the present best-of-three sets system.
Further, the substantial reduction in the standard deviation of the number of points played by
replacing the present third set by a tiebreak or super tiebreak game is reported.

1 Introduction

Recently the International Tennis Federation (ITF) approved several new tennis scoring systems for
use in professional and amateur competition. This approval followed the belief that there may be some
merit in replacing the present best-of-three sets system with a best-of-five short sets system. In these
short sets the winner wins by 4 games to 0 games, 4-1, 4-2, 5-3, or 5-4 following a (first to seven points
leading by at least two points) tiebreak game if the game score reaches 4-4. It can be seen that these
short sets are equivalent to starting at 2-2 within the present set structure. Thus, the less important
games at the beginning of the (present) set are removed, so play progresses more quickly to the most
exciting part of the set (i.e. the end). Also, playing (possibly) five sets rather than three provides extra
opportunities for fresh starts and additional opportunities for a swap in the lead. These were seen as
attractive characteristics in moving to a best-of-five short sets structure.

The ITF also approved an alternative within the game structure. This alternative allows for the
playing of only one point at deuce to determine the winner of the game (called “no ad” games). It was
felt that this would reduce the number of points in a match and the variability in match duration. Also,
an increase in the percentage of service breaks may not be a bad thing for the game.

Other ITF approved alternatives relate to the final set within a best-of-five or best-of-three sets
structure. The final set can be a fifth or third set of the same type as the earlier ones, a regular tiebreak
or super tiebreak game to replace the fifth or third set, or a “half-set” or “sudden death” set with
possible game scores of 2-0, 3-1, or 3-2 following a tiebreak game at 2-2.

*This research was supported in part by the International Tennis Federation.
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Standard ~ Probability better

Scoring system Mean, p deviation, o player loses, @

3S6 149.8 40.7 0.153
Al 554 164.2 45.0 0.140
A2 554, “no ad” 146.2 38.7 0.161
A3 554, “0-15” 144.2 40.6 0.143
A4 554, “0-15", “no ad” 123.5 33.3 0.169
A5 554, “40-0, 0-40” 150.1 42.1 0.146
A6 554, “0-15, 40-15” 134.6 38.5 0.147
A7 554, “30-0, 40-15” 128.8 36.7 0.158
Bl 4S54, TB 156.7 36.9 0.162
B2 4S54, TB, “no ad” 139.6 31.7 0.182
B3 454, TB, “0-15” 137.9 34.0 0.165
B4 4S54, TB, “0-15”, “no ad” 118.4 27.8 0.188
B5 454, TB, “40-0, 0-40” 143.5 35.0 0.169
B6 454, TB, “0-15, 40-15” 128.7 32.5 0.167
B7 4S54, TB, “30-0, 40-15” 123.3 31.0 0.177
Cl1 454,STB 157.8 37.9 0.156
C2 454, STB, “no ad” 140.8 32.7 0.175
C3 4584, STB, “0-15” 139.1 35.1 0.158
C4 4S84, STB, “0-15", “no ad” 119.9 29.0 0.182
C5 454, STB, “40-0, 0-40” 144.8 36.0 0.164
C6 454, STB, “0-15, 40-15” 129.9 334 0.162
C7 454, STB, “30-0, 40-15" 124.6 32.2 0.174
D1 4S54, HS 159.9 40.2 0.152
D2 4S54, HS, “no ad” 142.3 34.6 0.173
D3 4S5S4, HS, “0-15" 140.1 36.3 0.155
D4 4S5S4, HS, “0-15”, “no ad” 119.8 29.5 0.181
D5 4S5S4, HS, “40-0, 0-40” 146.2 37.8 0.156
D6 4S5S4, HS, “0-15, 40-15” 130.8 34.5 0.157
D7 4S5S4, HS, “30-0, 40-15” 125.5 33.5 0.167

Table 1: The characteristics of several alternative tennis scoring systems.

2 Best-of-five short sets alternatives to the present
best-of-three sets system

A primary purpose of providing these alternatives within the general tennis scoring system framework
was to provide a best-of-five short sets scoring system with a similar (or a little smaller) expected
number of points played to the present best-of-three sets system. Other characteristics of the best-of-
five short sets structure should be comparable to (or better than) the present best-of-three sets system.
For example, the probability, @, that the better player, player A, loses the match should be similar
to its present value, certainly not much larger. Also, the standard deviation of the number of points
played, should be no larger than at present, and preferably smaller. This is because we would ideally like
the duration of tennis matches to be more predictable. Hence, the main characteristics of interest when
considering a new tennis scoring system, are the expected number of points played, u, the standard
deviation of the number of points played, o, and the probability that the better player wins, P. Note
that the probability that the better player loses, @, is equal to 1 — P.

It is clear that the ITF approvals provide a range of best-of-five short sets alternatives to the present
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best-of-three sets system. In this paper we consider the various scoring system alternatives with the
view to seeing which have characteristics (u, o, Q) that are close to, or better than, the present system.
We also consider some additional systems that may be of interest in the future.

These additional scoring systems make use of the following constructs.

(i) “0-15” tennis, in which the server starts each game at 0-15, or one point down. This concept is due
to Miles [1]. It can be seen that, on the one hand, the server has the advantage of serving, while,
on the other hand, has the disadvantage of being down a point. Miles demonstrated the efficiency
that could be achieved by using such a construct. Note that it can be argued that “0-15” tennis
is a smaller change to the scoring system than “no ad” tennis, because the score 0-15 regularly
occurs at present, whereas players did not previously play only one point at deuce.

(ii) “40-0, 0-40” tennis, in which the server is declared to have won (lost) the game when the score
reaches 40-0 (0-40).

(iii) “0-15,40-15” tennis, in which the server starts each game at 0-15, and is declared the winner of
the game if the point score reaches 40-15.

(iv) “30-0,40-15” tennis, where the server is declared the winner of the game if the score reaches 30-0
or 40-15. We have considered such a system even though it is not suggested that it would be of
interest to players or spectators.

These various constructs have been selected for consideration as they represent alternative ways of
removing the less “important” points within a game of tennis (in which serving is a definite advantage;
see Morris [2]). The efficiency of a scoring system is enhanced by making the importance of points less
variable (see Pollard [4]). This can often be achieved by removing the less important points.

In order to find reasonable best-of-five short sets alternatives to the present best-of-three sets system,
we need to make some assumption about the probability that a player wins a point when serving. The
ITF noted that, over a large number of tournaments and court surfaces, touring men professionals won
76% of their service games in singles. We note that a player who has a probability of 0.612 of winning a
point on service, has a probability of 0.76 of winning a service game, assuming points are independent.
In order to compare the probability of each player winning a match for each of the various scoring
systems, it is appropriate to assume one player (the better player, player A) has a point-probability on
service greater than 0.612, and the other player, player B, a point-probability on service less than 0.612.
We have assumed the values p, = 0.612 + 0.04 = 0.652 and p, = 0.612 — 0.04 = 0.572, respectively.

Table 1 gives the values for u, o and @ for various scoring systems when the probability player A
wins a point on service is p, = 0.652 and the probability player B wins a point on service is p, = 0.572.

Standard ~ Probability better

Scoring system Mean, p deviation, o player loses, )
356 149.8 40.7 0.153

E1 2S6, TB 130.6 23.6 0.200

E2 2S6, TB, “no ad” 116.3 19.7 0.218

E3 256, TB, “0-15” 117.0 22.8 0.202

E6 2S6, TB, “0-15, 40-15" 109.0 22.1 0.202

F1 2S6,STB 132.7 24.5 0.194

F2 256, STB, “no ad” 118.4 20.9 0.207

F3 2S6, STB, “0-15” 119.0 24.0 0.193

F6 2S6, STB, “0-15, 40-15” 111.0 23.2 0.196

Table 2: The characteristics of several best-of-two sets tennis scoring systems.
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Success rates on serve for players A, B: 0.6520, 0.5720.
Number of matches won by players A, B: 84693, 15307.
Proportion of service games won by players A, B: 0.833, 0.674.
Proportion of tiebreak games won by players A, B: 0.626, 0.374.
Two sets — number of occurrences: 62746.
Three sets — number of occurrences: 37254.
Duration in points has mean 149.80, standard deviation 40.67,
median 142, mode 121.
skew measure 1 = 3 X (mean — median)/standard deviation = 0.58,
skew measure 2 = (mean — mode)/standard deviation = 0.71.
Frequency distribution for the 100,000 matches:
Number of points | Frequency
1-59 0
60-69 18
70-79 342
80-89 1791
90-99 5347
100-109 9243
110-119 11210
120-129 10880
130-139 9183
140-149 7781
150-159 6801
160-169 6262
170-179 5886
180-189 5797
190-199 5292
200-209 4493
210-219 3571
220-229 2601
230-239 1589
240-249 914
250-259 534
260-269 278
270-279 115
280-289 45
290-299 15
300-309 9
310-319 2
320-329 1
over 330 0

Table 3: Distributional characteristics of current best-of-three sets scoring system (3S6).

The notation 3S6 represents the present scoring system (the best-of-three tiebreak sets); 5S4 represents
the best-of-five short sets (described earlier); 4S54, TB represents four short sets followed by the tiebreak
game (first-to-seven points, leading by two points) if necessary; STB represents the super tiebreak game
which has a first-to-ten points, leading by two points structure; and HS is the half-set described earlier.
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The value of each (u, 0, Q) in Table 1 is based on a simulation of 100,000 matches for each scoring system
356, Al, A2, .... By comparison with the exact results for 356 (see Pollard [3]), and by comparison
with some simulations of 1,000,000 matches, it was ascertained that simulations of 100,000 matches gave
sufficiently accurate results. Table 3 demonstrates the typical output of the simulations and provides
additional detail for the current scoring system. The positive skew of the present system is noted. v

Success rates on serve for players A, B: 0.6520, 0.5720.

Number of matches won by players A, B: 80613,19387.
Proportion of service games won by players A, B: 0.832, 0.674.
Proportion of tiebreak games won by players A, B: 0.625, 0.375.
Proportion of super-tiebreak games won by players A, B: 0.646,
0.354.

Two sets — number of occurrences: 62662.

Three sets — number of occurrences: 37338.

Duration in points has mean 132.72, standard deviation 24.54,
median 131, mode 130.

skew measure 1 = 3 X (mean — median)/standard deviation = 0.21,
skew measure 2 = (mean — mode)/standard deviation = 0.11.

Frequency distribution for the 100,000 matches:

Number of points | Frequency
1-59 0
60-69 17
70-79 332
80-89 1741
90-99 5422

100-109 10373
110-119 14271
120-129 15682
130-139 15220
140-149 12670
150-159 9717
160-169 6737
170-179 3874
180-189 2235
190-199 1056
200-209 446
210-219 151
220-229 41
230-239 14
240-249 1
over 250 0

Table 4: Distributional characteristics of best-of-two sets scoring system F1 (256, STB).

Some general observations can be made from Table 1.

(i) The use of the “no ad” construct reduces the expected number of points played by about 17 or
18 points, reduces the standard deviation by about 5 or 6 points, but increases @@ by about 0.02
which is not an unsubstantial amount (about 13%).
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(ii) The use of the “0-15" construct reduces p by about 19 or 20 points, reduces o by about three
or four points, and increases ) only marginally by about 0.002 or 0.003. As this increase in @ is
quite small compared to that in (i) above, the “0-15" construct would appear to be more useful
than the “no ad” construct.

(iii) The use of the STB game rather than the TB game as the fifth set, increases both p and o by a
little over one point. The STB game however, has a smaller increase in @) relative to the current
system 3S6 (0.003 compared to 0.009). Thus the STB game would appear to be preferable to the
TB game when used as a fifth set.

(iv) The use of the “40-15” stopping rule as an addition to the “0-15” starting rule decreases u by
about a further nine points and o by about a further two points. The increase in () is relatively
small (0.002 to 0.004). Thus, in terms of u, o and @) considerations, this “0-15, 40-15” combination
is a worthy contender.

In summary, the Table 1 scoring systems that have a decrease (or only quite a small increase) in @
as well as decreases in p and o (relative to 3S6) are those listed as A3, A6, A7, C3, D3 and D6 (D5 has
only a small decrease in ). If consideration was to be given to adopting any additional scoring systems,
these could be included in those considered.

3 The best-of-three sets system

We now briefly consider a system which some people have called the “best-of-two sets” system and
which has been used at important tournaments. This system involves playing two (tiebreak) sets, and
if the set score reaches 1-1, a TB or STB game is played as the final set. This system has been used
in mixed doubles at the Australian Open and in the Hopman Cup. In each case it replaced the best-of-
three tiebreak sets system. In Table 2 we compare, for the same parameter values as in Table 1, these
best-of-two sets systems within the current 3S6 system. Table 4 gives more detail for the (256, STB)
structure. It can be seen from Table 2 that a substantial reduction in the standard deviation is achieved
by using this best-of-two sets structure. There is however a substantial increase in @), the probability
that the better team loses. Similar observations to (i) to (iv) above can be made from Table 2. The
reduction in the standard deviation is seen as attractive to the players in the mixed doubles events as
they are typically also involved in the men’s or ladies’ doubles and/or the men’s or ladies’ single events,
and would prefer not to have to play a mixed doubles match with a “long” duration. The best-of-two
sets system achieves this elimination of long matches. This reduction in standard deviation in the best-
of-two sets system is also very useful when two teams of four doubles players each play on adjacent
courts and then swap over to play the alternate pair. Greater synchronisation is achieved across the two
courts, with less time spent waiting for the second court to complete their longer match.
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Abstract

A server has a range of options when starting a point. Some of these options are better than others
when playing a single point. In order to avoid becoming predictable, the server will typically vary
the option chosen, making use of all options, even those with the least favourable outcomes. This
paper shows the considerable advantage of using the better options on the more important points.

1 Introduction

Tennis singles is usually modelled mathematically by assuming that the probability that the better
player wins a point when serving is p,, and that the probability that the other player wins a point when
serving is py (pa > pu). Typically p, and p;, are assumed to be constant. This constant probabilities model
is a reasonable first approximation to the practical situation and probably gives reasonably accurate
values for the mean p and standard deviation o of the number of points played in a match. Non-constant
values for p, and py, particularly for the situation in which one player increases his or her p-value on
the more important points, can affect the probability that each player wins the match. The difference
between the number of points won by each player is typically quite small, and sometimes the winner
wins fewer points than the loser. In the tennis world, there is general acceptance of the importance of
being able to play the “big points” well.

In this paper we consider the situation in which the server does not play a single type of point when
serving, but selects from a range of options on both the first and second serve. Some of these options
are more likely than others to lead to winning the point. The player however believes it is important to
use the full range of options so that he or she keeps the opponents guessing as to which option is to be
used next. A method for evaluating the benefit from using the better options on the more important
points is demonstrated.

2 The analysis

Let us consider, for example, a right-handed player, player A, serving to a right-handed receiver in the
first, or forehand, court. Let us assume that player A has four service options on the first serve. In
particular we assume:

1. the service down the middle of this first court is the most likely (fast) first service to go in (that is,
not be a fault), and player A has a probability 0.6 of serving in such a service, and a probability
of 0.7 of winning such a point if the service does go in;
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2. the service down the centre of the court to the receiver’s backhand is the second most likely (fast)
first service to go in, and player A has a probability 0.55 of serving in such a service, and a
probability of 0.75 of winning such a point if the service does go in;

3. the service to the receiver’s forehand is the third most likely (fast) first service to go in (the net
is higher for this service than for 1 and 2 above), and player A has a probability 0.5 of serving in
such a service, and a probability 0.8 of winning such a point if the service goes in;

4. the wide and swinging-away service to the forehand is the least likely service to go in, and player A
has a probability 0.45 of serving in such a service, and a probability 0.85 of winning such a point
if the service goes in.

We assume that, in order to keep the opponent guessing, player A must serve each of these first
service options at least 20% of the time, and must not serve any one of the options more than 35% of
the time.

It is assumed that player A has three service options for the second serve. In particular we assume:

1. the service down the centre of the service court has a probability 0.9 of going in, and player A has
a probability 0.5 of winning the point if it goes in;

2. the service down the centre of the court to the receiver’s backhand has a probability 0.85 of going
in, and player A has a probability 0.55 of winning such a point if it goes in;

3. the service to the player’s forehand has probability 0.8 of going in, and player A has a probability
of 0.55 of winning the point if it goes in.

We assume player A must serve each of these second service options at least 25% of the time, and
must not serve any one of them more than 40% of the time.

This range of options and probabilities realistically represents the practical solution in many matches
in men’s singles. Also, the range of options and probabilities to the second, or backhand, court is similar,
and is assumed to be the same. Further, although the situation above has been described for right-handed
players, the situation is similar for left-handed players.

Considering firstly the second service situation, player A has a probability 0.9 x 0.5 = 0.45 of winning
the point under option 1, 0.4675 under option 2, and 0.44 under option 3. By using the best option,
option 2, on 40% of occasions, the worst option, option 3, on only 25% of occasions, and option 1 the
remainder of the time, each at random, the probability of player A winning a point on second service is
given by 0.4 x 0.4675 + 0.25 x 0.44 + 0.35 x 0.45 = 0.4545.

We now consider the probability player A wins a point using the first of the four options for the
first service, assuming the second service is a random selection as given by the above paragraph. The
probability player A wins a point under first serve option 1 is equal to 0.6 x 0.7 + (1 — 0.6) x 0.4545 =
0.6018. The corresponding probabilities under first service options 2, 3 and 4 are 0.6170, 0.6273 and
0.6325. By using option 4 on 35% of occasions, options 1 and 2 each on 20% of occasions, and option 3
on 25% of occasions, at random, player A’s probability of winning a point on service is 0.6219. Given
this probability of winning a single point, player A’s probability of winning a service game can be shown
to be 0.7796.

We now consider the increased probability of player A winning a service game by using first service
option 4 on the 35% of occasions which are the most important, option 3 on the 25% of occasions which
are the next most important, option 2 on the 20% of occasions which are the next most important, and
option 1 on the 20% of occasions which are the least important. It is assumed that second serves are at
random as described above. The importance of a point within a game (see Morris (1977)) is defined as
the probability of winning the game given the point is won minus the probability of winning the game
given the point is lost. Table 1 lists the various points (or states) within a game from the most important
(when the point-probability is 0.6219) to the least. It also lists the importance of each point, I, and the
expected number of times each point (or state) is played (or visited), E. Note that the sum of the E’s
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for states 10a and 10b equals 1 as the score 0-0 occurs once in a game. States 10a and 10b have been
created so that the entry for the cumulative E column for 10a, 3.8186, is 60% (that is, 35% + 25%)
of the expected number of points in the game, 6.3644. The other states 7a and 7b, and 12a and 12b,
have been created for corresponding reasons. The increase in player A’s probability of winning a point
in states 1, 2, ..., 7a is 0.6325 — 0.6219 = 0.0105; 0.0053 in states 7b, 8, 9 and 10a; —0.0049 in states
10b, 11 and 12a; and —0.0201 in states 12b, 13, 14 and 15. The increase (above 0.7796) in player A’s
probability of winning the game is given (approximately) by the sum of the products IEAp (where Ap
is the increase in point-probability for that state), and equals 0.0090 in this case.

1 E > FE
1. 30-40, ad receiver | 0.7302 0.3946 0.3946
2. 15-40 0.4541 0.1344 0.5290
3. 15-30 0.4477 0.2667 0.7957
4. 30-30, deuce 0.4439 0.8225 1.6182
3. 0-30 0.3853 0.1429 1.7611
6. 0-15 0.3404 0.3781 2.1391
Ta. 15-15 0.3131 0.0884 2.2275 (35%)
7b.  15-15 0.3131 0.3819 2.6094
8. 0-40 0.2824 0.0540 2.6634
9. 40-30, ad server 0.2698 0.6491 3.3125
10a. 0-0 0.2454 0.5061 3.8186 (60%)
10b.  0-0 0.2454 0.4939 4.3125
11.  30-15 0.2312 0.4387 4.7512
12a. 150 0.1877 0.3403 5.0915 (80%)
12b. 150 0.1877 0.2817 5.3732
13. 300 0.1114 0.3868 5.7600
14.  40-15 0.1020 0.3638 6.1238
15. 400 0.0386 0.2406 6.3644
6.3644

Table 1: The importance I of the various points in a game of tennis, and the expected number E of
times each point is played, during one play of a game (when p = 0.6219).

We now suppose the player in the previous paragraph also optimises on the second service, rather
than randomising on it. Thus, the best second service option, option 2, is used on the 40% of occasions
which are the most important, and the worst second service option, option 3, is used on the 25% of
occasions which are the least important, with option 1 being used the remainder of the time. The
increase (above 0.7796) in player A’s probability of winning the game can now be shown to be 0.0161,
using a similar analysis to that in previous paragraph.

3 Summary

We have considered a player who has four first service and three second service options, and made
what are believed to be reasonable probability assumptions concerning these options. Under these
assumptions, it can be shown that a player who serves each of the service options in a random and
equally likely fashion, has a probability 0.7733 of winning the game. By using the better options more
often (although subject to constraints on how often) and still randomising, this probability increases
to 0.7796. By randomising on the second service and using the better first service options on the more
important points, this probability increases to 0.7886. Further, by using the better first and second
service options on the more important points, this probability increases to 0.7957.
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The benefits of “lifting your game”, or playing the best options on the more important points, is
clear. The probability of winning the game is increased somewhat, the probability of winning the set is
increased by even more, and the probability of winning the match is increased by a substantial amount.

Players may find it useful to collect the relevant statistics for their own play, so that the approach
taken in this paper can be put into practice, at least partially. One challenge in putting the approach
into practice is to avoid the danger of becoming too predictable.
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Abstract

In 2000 the International Tennis Federation approved several new tennis scoring systems. One of
these new scoring systems, the “best-of-two sets” system has been used for mixed doubles in the
major tournament, the Australian Open. Within this best-of-two sets scoring system, the tiebreak
game plays a substantially enhanced role. Questions such as “Should a mixed doubles pair elect to
use the stronger server to serve first or second in the tiebreak game?” and “Is the tiebreak game fair
in this mixed doubles situation?” become considerably more important than before the new systems
were approved. In this paper we show that the tiebreak game, although fair in the singles context
(under basic assumptions), can become unfair in the doubles context. We also outline a solution to
this unfairness.

1 Introduction

In 2000 the governing body of tennis, the International Tennis Federation approved several new tennis
scoring systems for use in professional and amateur competition. One of these new scoring systems is
the “best-of-two sets” system. It consists of playing two (normal) sets, and if one player (or doubles
pair) has not won the match by two sets to nil, the tiebreak game is then played to determine the
winner. It can be seen that, in the case in which the match reaches one set all, the tiebreak game plays
a particularly important and considerably enhanced role.

This new best-of-two sets system was used in 2001 in the Australian Open Mixed Doubles Champi-
onships. In this tournament the “12-point” or “first-to-seven and lead by two points” tiebreak game was
used if the sets score reached 1-1. Further, the best-of-two sets system with a super tiebreak game (“first-
to-ten and lead by two points”) was used in the 2002 Australian Open Mixed Doubles Championship
and in the recent Hopman Cup for dead rubbers.

The use of the tiebreak game as the (sudden-death) decider in the best-of-two sets mixed doubles
highlights several interesting and important questions. Should a mixed doubles pair elect to use the
stronger server to serve first or second in the tiebreak? Indeed, is the tiebreak game fair in this doubles
situation? We now consider these two questions and outline a method for modifying the tiebreak game
so that it is fair for doubles.
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2 The 12-point tiebreak game

Consider two doubles teams A and B, with players A1 and A2, and B1 and B2. Suppose team A
has a probability P4; of winning the point when player Al serves, and probability P4o when A2
serves. Similarly, suppose team B has a probability Pg; of winning the point when B1 serves, and
probability Py when B2 serves.

Consider the case of two equal teams when P4, = Pg; = 0.7 and Ps» = P> = 0.5. For two equal
teams, the probability of each team winning under a fair scoring system should equal 0.5. Assuming
without loss of generality that Team A serves first in the tiebreak game, there are four cases for the
order of serving.

(a) Al, Bl B1, A2 A2, B2 B2, A1 A1, B1 B1, A2 ...
(b) A2, B2 B2, Al Al, B1 B1, A2 A2, B2 B2, Al ...
(c) Al, B2 B2, A2 A2, B1 B1, A1 Al, B2 B2, A2 ...

(d) A2, B1 B1, Al A1, B2 B2, A2 A2, Bl B1, Al ...
For cases (a), (b), (c) and (d), respectively:

Prob (Team A wins in 12 points or less) is 0.3348, 0.4303, 0.4303, 0.3348,
Prob (the tiebreak game reaches 6-6) is 0.2360, 0.2323, 0.2323, 0.2360,
Prob (Team A wins the tiebreak game) is 0.4618, 0.5356, 0.5287, 0.4719.

The results (here and following) have been evaluated using a method similar to that described in
the Appendix, and have been rounded to four decimal points.
It can be seen that:

(i) Team B should always elect to use its stronger server, player B1, first (cases (a) and (d)). When
Team B does this, player B1 serves four points out of the first 12 points of the tiebreak game,
player B2 serves only two points, and players Al and A2 each serve for three points, leading to
the observed unfairness.

(ii) Interestingly, Team A should use its weaker server, player A2, on the first point (cases (b) and
(d)). When Team A does this, its stronger server, player Al, serves three points which are (on
average) more important (see Morris (1977)) than the three points that player A2 serves.

(iii) It follows from (i) and (ii) that case (d) is the case of practical relevance, and in this case the
tiebreak game is unfair. The probability that team A wins the tiebreak game is only 0.4719, which
is less than 0.5.

Correspondingly, it can be shown that the first to ten points (and lead by at least two points) super
tiebreak game is also unfair.

3 Designing a tiebreak game which is fair for doubles

To design a tiebreak game which is fair, we need to think in multiples of eight points. Consider a 16-point
tiebreak game (first to nine points and leading by at least two points). Again we consider the four cases
(a) to (d) above for the order of serving.

With a 16-point tiebreak, each player serves four of the first 16 points, and so one unfair aspect of
the 12-point tiebreak is removed.
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Now, for each of the cases (a), (b), (c) and (d), respectively:

Prob (Team A wins in 16 points or less) is 0.3974, 0.3974, 0.3974, 0.3974,
Prob (this tiebreak game reaches 8-8) is 0.2052, 0.2052, 0.2052, 0.2052,
Prob (Team A wins the tiebreak game) is 0.4904, 0.5078, 0.5166, 0.4843.

It can be seen that both teams would now elect to use their stronger server first, and that case (a)
is therefore the case of practical relevance.

It is interesting to note that in each of these four cases the probability of Team A winning in 16
points or less is 0.3974, and the probability of the tiebreak game reaching 8-8 is 0.2052.

Thus, it can be seen that this tiebreak game becomes unfair after the 16th point is played. This is
because the players are serving two points at a time. The solution is for the players to serve alternately
only one point at a time at this stage. Thus, noting case (a) is the relevant one, the 17th, 18th, 19th,
20th, ... points would be served by players A1, B1, A2, B2, respectively. With this minor modification
in service sequencing, Prob (Team A wins the tiebreak game) becomes 0.5, and this modified 16-point
tiebreak game is fair. An analysis of this modified fair 16-point tiebreak game is given in the Appendix.

(It might be noted that the teams should change ends after eight points (not six points) during this
16-point tiebreak game. It can also be seen that for the first, second, third, ... groups of eight points,
each team has exactly two out of four serves, or half of the serves, from the same end of the court as
that used prior to the tiebreak game. By comparison, in the 12-point tiebreak, for each of the first,
second, third, ... groups of six points, the proportion of serves from the same end is either one-third
or two-thirds for each team, and is sometimes different for the two teams, leading to an additional
component of unfairness in some playing conditions.)

So far we have considered two equal doubles pairs, A and B, with win-on-serve probabilities Py; =
Pp, = 0.7 and P4s = Pps = 0.5, and have demonstrated a method of designing a fair tiebreak game
when Psy = Py and Pas = Pps. We now consider a doubles pair C with Pey = Pos = 0.6. Doubles
pair C is equal in standard to pair A or pair B (since Pcy + Poa = Pay + Paz = Pg1 + Pp2). We now
consider the 16-point tiebreak game between pair A and pair C, and there are four cases for the order
of serving to consider.

(i) A1, C1 Cl1, A2 A2, C2 C2, A1 A1, C1 C1, A2 ...

)
(i) A2, C1 C1, A1 A1, C2 C2, A2 A2, C1 C1, Al ...
(iii) C1, Al A1, C2 C2, A2 A2, C1 C1, AL A1, C2...
(iv) C1, A2 A2, C2 C2, A1 A1, C1 C1, A2 A2, C2 ...
For each of these cases (i), (ii), (iii) and (iv), respectively:

Prob (Team A wins in 16 points or less) is 0.3981, 0.3981, 0.3981, 0.3981,
Prob (Team C wins in 16 points or less) is 0.3990, 0.3990, 0.3990, 0.3990,
Prob (this tiebreak game reaches 8-8) is 0.2029, 0.2029, 0.2029, 0.2029,

Prob (Team A wins the tiebreak game) is 0.5059, 0.4926, 0.5059, 0.4926.

It can be seen that pair C has a slightly greater (than pair A) chance of winning the tiebreak game
in 16 points or less. Also, provided pair A selects player A1l to serve first, pair C has a probability less
than 0.5 of winning the tiebreak game. This is because of the advantage pair A has on the points-pairs
played on points numbered 17 and 18, 21 and 22, 25 and 26, .... This advantage can be removed by
insisting that multiples of four points are played after 88 is reached, so that, if 88 is reached, a total
of 20, 24, 28, ... points is played. The leading by two rule would still apply after each of these multiples
of four points. (Note that in practice the last of each of these four points, the 20th, 24th, 28th , ..., may
not be required when one pair is three points ahead). Under this modification of playing multiples of
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four points once 8-8 is reached, Prob (Team A wins the tiebreak game) is 0.4992 in all cases (i) to (iv).
Thus, under this modification, pair C has a slightly greater than 0.5 probability of winning the 16-point
tiebreak. However, it can be seen that with this modification we have a scoring system which is much
closer to fair than the one without it. Hence, this modification for the 16-point tiebreak is recommended.
(Note that it would be incredibly exciting when a pair comes from two points down to win!)

The system outlined above goes a very long way to achieving fairness in the tiebreak game. However,
it would appear that there is no way (in a typical scoring system) of achieving exact fairness for the case
in which two equal pairs have different variances in their p-values. For typical scoring systems (indeed all
reasonable scoring systems), the (equal) pair with the smaller variance in p-values has a (very slightly)
greater than 0.5 probability of winning. This would appear to be due to the concave downward nature
of the relationship between the probability of winning a single point and the probability of winning
overall under the particular scoring system.

There would appear to be a good case for introducing this modified 16-point tiebreak game into
mixed (and women’s and men’s) doubles in order to resolve the unfairness of the present tiebreak
structure. Matches will, of course, have a slightly larger average duration, and the probability of the
better team winning will be slightly higher than when the present 12-point tiebreak is used. This is seen
to be an advantage for the cases in which a tiebreak is used to replace a set.

A corresponding 24-point tiebreak game, with players serving alternately if the score reaches 12-12,
would also be fair (for two equal pairs with the same variances in their p-values). It is clear that such
an extended tiebreak would address the concerns of those who claim that the 12-point tiebreak is a “bit
of a lottery”, and could be particularly relevant for grand slam mixed doubles.

Appendix — An analysis of the modified fair 8n-point tiebreak
game for doubles

Suppose that a tiebreak game of doubles is the best of 2b points (b = 4, 8, 12, 16, ...), and so is won
by the team that first reaches a score of b+ 1 points, provided that the opposing team has a score
of b — 1 points, or fewer. To simplify the notation in this appendix, we refer to the players as 1, 2,
3, 4 rather than using A1, B1, A2, B2. We suppose that team A comprises players 1 and 3, and that
team B comprises players 2 and 4. Player 1 (team A) serves the first point of the tiebreak, then player 2
(team B) serves for two consecutive points, followed by player 3 (team A) serving for two consecutive
points, then player 4 (team B) serving for two consecutive points, etc. Thus during the first 16 points
of the tiebreak, the sequence of serving by the players is as follows:

1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1 ...

This continues until either one team reaches b 4+ 1 points, leading by at least two and thereby wins the
tiebreak game, or the score reaches b points all.

In the event that the score reaches b points all, the players alternate service, with the tiebreak game
decided when one team leads the other by two points. Thus points 2b+ 1, 2b+ 2, ... of the tiebreak are
served by the players as follows:

1,2,3,4,1,2, ...

Let p; denote the probability that player ¢ wins a point when serving, and let ¢; = 1 — p; for i = 1,
L4
Given numeric values for py, p2, p3, p4+ and the value of b, it is a simple matter to program a computer
to determine:

P(i,j) = probability that the tiebreak score reaches i points to Team A and j points to Team B,

where ¢ + j < 2b. Then
b1
Prob (Team A wins the tiebreak in the first 2b points or less) = Z Pb+1,y),
7j=0
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and ,
—1
Prob (Team B wins the tiebreak in the first 2b points or less) = Z P(i,b+1),
=0
and

Prob (point scores are level after the first 2b points) = P(b,b).

For the score to move from (b, b) to (b+ 2,b), player 1 must win service at point 2b+ 1, and player 2
must lose service at point 2b + 2. Thus P(b+ 2,b) = P(b,b)p1gs. Likewise, P(b,b+ 2) = P (b, b)q1 ps.
Also, if either player 1 and 2 both hold their services, or both lose their services, the score moves to
(b+1,b+1), so that
P(b+1,b+1) = P(b,b)(p1p2 + 0162).

If the score reaches (b+ 1,b+ 1), then player 3 serves at point 2b + 3 and player 4 serves at point 2b + 4,
and
Pb+2,b+2)=P(b+1,b+1)(psps + ¢3q4).
If the score should reach (b + 2,b + 2) then the cycle of players 1, 2, 3, 4 serving is repeated. Hence
it is easy to see that, for k=0, 1, 2, ...,

k

P(b+ 2k + 2,0+ 2k) = P(b,b)((p1p2 + q142) (P3P + q3G4)) P12,

P(b+ 2k, b+ 2k +2) = P(b,b)((p1p2 + 01¢2) (p3pa + @301)) *@1p2,
P(b+2k+1,b+ 2k + 1) = P(b,b)((p1p2 + q1¢2) (p3pa + q394))* (102 + q102),
P(b+2k+3,b+2k+1) = P(b,b)((p1p2 + q1¢2) (p3pa + q394))* (102 + q102) P34,
P(b+2k+1,b+ 2k +3) = P(b,b)((p1p2 + q1¢2) (p3pa + ¢394))* (102 + q102)q3p1,
P(b+ 2k +2,b+ 2k 4+ 2) = P(b,b)((p1p2 + q1¢2) (pspa + q3q4))*H.

Consequently,
Prob (Team A wins the tiebreak at point 2b + 2 or subsequently)
=S (P(b+ 2k +2,b+2k) + P(b+ 2k + 3,b + 2k + 1))
k=0
= P(b,b)(p1gz2 + (P1p2 + 01¢2)P3qs) D _((p1p2 + 11¢2) (Pspa + q3¢4))"
k=0
— P(b,b) P12 + (P12 + 1¢2)P3qa
1 — (pip2 + q192)(P3ps + q394)
and
Prob (Team B wins the tiebreak at point 2b + 2 or subsequently)
— P(b,b) qip2 + (P1p2 + q142)q3p4 -
1—(pip2 + 0162) (P3P + q3q4)
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Abstract
This paper investigates combinatorial arrangements of the dartboard to maximise a penalty function
derived from the differences of adjacent sectors. The particular penalty function is constructed by
summing the absolute differences of neighbouring sectors raised to a power between zero and one.
The arrangement to give the maximum penalty is found.

1 Introduction

Let A be the set of all permutations of {1,2,...,n} and write
n
Dp(A) = laj — aja |,
j=1

where A = (a1,a2,...,a,) € Aand a,41 = a;.

We consider the combinatorial optimisation problem:

L,:  Find A € A such that D,(A) = max Dy(4).

This problem has been studied in the context of a generalised dartboard with n sectors numbered 1,
2, ..., n. Problem L, can then be interpreted as arranging the sectors to maximise a penalty function.
Two penalty functions have received most attention: L, which maximises the sum of absolute differences
of all pairs of adjacent numbers, and Ly, which maximises the sum of the squares of these differences.

Figure 1 shows the arrangement of the standard dartboard (also termed the “London” or the “Clock”
board). This arrangement is by far the most common and along with the current rules of the game was
developed in 1896 in Lancashire, [6]. It is of interest to note that, in general, the neighbours of relatively
high scoring sectors are relatively low scoring sectors. Competitors aiming for a high score (say 20) will
have inaccurate throws punished by the low scoring neighbours (5 and 1).

Alternative dartboard arrangements are still in use (particularly in the Manchester area of Britain,
according to Selkirk [7]) and various penalty functions suggest yet more arrangements. This paper
continues with the theme in the literature and extends the study of L, to the case 0 < p < 1.

For n = 20, it was demonstrated by Cohen and Tonkes [3] that the standard arrangement shown
does not solve L, for p > 1. It is well known that the standard dartboard arrangement is close to
optimal for p = 1: D1 (Agartboara) is 198 compared to the optimal value of 200.

Everson and Bassom [5] give a direct solution of L;. Selkirk [7] and Eiselt and Laporte [4] consid-
ered Ly and L. Cohen and Tonkes [3] used a string reversal algorithm to solve the L, problem for all
p>1
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Dartboard arrangements with a concave penalty function 237

The intention here is to solve L, for 0 < p < 1.

More general versions of the problem have been attacked by Chao and Liang [1], where circular
permutations of arbitrary numbers are considered (the differences between neighbours are not necessarily
integer). Their approach involves a graphical representation of the solution, and deals with an arbitrary
concave penalty function in the formulation of D,. While they present a solution with the same ordering
as ours for n even, their result cannot be correct and we have produced a counterexample in Remark 2.
If the numbers a; are arbitrary, it appears that, for n even, the optimal arrangement A depends on
the particular values of a; and the form of the penalty function. Our Theorem 2 demonstrates that
the optimal arrangement is essentially unique (when 0 < p < 1) in the case that a; are all consecutive
integers and D,, takes the specific form above.

We refer to the permutation A above as an arrangement, and write it more usually as the sequence
A=ay,as,...,a, Wecall an arrangement B € A equivalent to A if B = a4, aq41,...,0n,a1 ...,a41 for
some ¢, 1 < ¢ < n (cyclic permutation of A), or B = ay, Gp—1,--.,01,0n,---,0r+1 for somer, 1 <r <n
(reversed cyclic permutation of A). For an actual dartboard, these imply that it does not matter which
number is uppermost or whether the board is reflected in a diameter.

Figure 1: The traditional dartboard arrangement.

Define the left and right neighbours of elements in A in the obvious way, taking the left neighbour
of a; to be a, and the right neighbour of a,, to be a;.

For n even, let s1,52,...,5,/2 be a permutation of {1,2,...,n/2} and let l1,l,...,l,/> be a per-
mutation of {n/2 + 1,n/2+ 2,...,n}. We call A an alternating arrangement if it can be written as
81,01, 82,12, .-+, 8p/2, /2. For n odd, let m = (n +1)/2, let s1,82,...,8;,—1)/2 be a permutation of
{1,2,...,(n—1)/2} and let I1,12,...,l(—1)/2 be a permutation of {(n+3)/2,(n+5)/2,...,n}. In this
case, A is an alternating arrangement if it is equivalent to m, s1,11, 82,02, ., $(n—1)/2,{(n-1)/2-

It has been shown (for instance by Selkirk [7]) that A solves L; if and only if A is alternating.

When p > 1, it is found [3] that an alternating arrangement is necessary, but not sufficient to solve L.
Amongst all of the alternating arrangements, the solution to L, is achieved by the arrangement which
heuristically gives the most variation in the differences of adjacent pairs.

When p < 1, again we find that an alternating arrangement is necessary to solve L,. However, this
time uniformity amongst the differences yields a larger value of the penalty function D,,.

2 Main result

Our main result gives the explicit arrangement to solve L,:
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Theorem 1 For 0 < p < 1, the solution of L, is given by

(N n n n n n n n
—+1,2, = 4, — ceoon—2,——1n,—n—-1,-—-2n—-3,... —+2,1, —
2 + 1, 32 +37 32 +576a y 1V 72 7”323n 32 y 1V 37 7372 +2,1, 2 0dd7
~ n n n n n n n n
A: 5—|—1,2,§+3,4,§+5,6,...,n—3,§—2,n—1,§,n,§—1,n—2,...,3,§+2,1, 56'06”,
3 ) -1 1
\1,—n; ,2,—n; ,3,...,n—1,—n2 ,n,—n; , n odd.

The solution is unique up to equivalence.

3 Proof of the main result

The primary tool that we will use is Jensen’s inequality for concave functions (see, for example, [2]).
Recall that a real-valued function f(z) is strictly concave on interval (a,b) if, for any z,y € (a,b) it
holds that Af(z) + (1 — AN f(y) < f(Az 4+ (1 — A)y) for all 0 < A < 1. The function f(z) = 2P is an
example of a strictly concave function on (0,00) when 0 < p < 1. A smooth concave function f(z) has
the property that f'(x) is always decreasing.

Lemma 2 (Jensen’s concave inequality) Let f(x) be a continuous, real valued function which is strictly
concave on (a,b) and let x1, ..., Ty be in (a,b). Let Cy, ..., Cy all be nonnegative with the property

that 3", C; = 1. Then
f(Z C'i$i> > Cif ().
i=1 i=1
Equality holds only if x; are identical for all 1 < i < m with C; > 0.

For an arrangement A = ay, as, ..., ay, define the set of differences d;(A) = |a;+1 —a;| for 1 < i < n,
(where an11 = a1). If the arrangement A is understood, we will abbreviate d;(A4) to d;. If n is even
then {d;(A)}™, contains precisely n/2 — 1 instances of n/2 — 1, n/2 — 1 instances of n/2 + 1 and two
instances of n/2. For n odd, {d;(A) ™, contains (n —1)/2 instances of (n+1)/2 and (n+1)/2 instances
of (n—1)/2.

The proof of Theorem 3 is contained in [3].

Theorem 3 An arrangement A € A is a solution of L1 if and only if it is alternating. Furthermore,
D1(A) =n?/2 for n even and D1 (A) = (n® —1)/2 for n odd.

To prove Theorem 1, we apply slightly different approaches for n even and n odd. Henceforth, we
assume that 0 < p < 1.

Lemma 4 Let n be odd. Suppose that A solves L,. Then di(A) € {(n—1)/2,(n+1)/2} forall1 < i < n.

Proof: Suppose that arrangement A solves L, and di(A) & {(n —1)/2,(n+ 1)/2} for some 1 < k < n.
Let {\;}, satisfy:

0< )\ <1 (1)
and
- n+1
A= . 2
Son=" )
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or (i) >0, Aid; > (n? — 1)/4 for all {\;}7, satisfying (1) and (2), or (iii) > i, \id; < (n? —1)/4 for
all {\;}; satisfying (1) and (2).
Assuming case (i), expression (3) can be written:

n
20 -1
PR
— n+1 2
Since 1", 2X;/(n + 1) =1, we can apply Jensen’s inequality with f(z) = 2? to obtain

n ) _ P
n+1" 2

i=1
- 1 —1\"*

:>Z)\idf§<n_2'_ )(”2 ) . 4)
i=1

By Theorem 3, >°"" | d; < (n? —1)2, and combined with (3)

22(1_/\i)difn;1- )

- .n (1_Ai)dfs”7‘1(”“)p. (6)

We now claim that (4) or (6) must be a strict inequality. This statement follows trivially if (5) is
a strict inequality, so assume that (5) is an equality. According to Jensen’s inequality, the only way
that (4) can be an equality is if d; are identical (call them d) for all j € {1,2,...,n} for which A; > 0.
Consequently, expression (3) implies that d = (n — 1)/2. Similarly, assuming equality in (5), the only
way that (6) can be an equality is if d; are identical (call them d) for all j € {1,2,...,n} for which
\; < 1. Consequently expression (5) implies that d = (n + 1)/2. However, we have assumed in the
statement of the theorem that di ¢ {(n —1)/2,(n + 1)/2} for some 1 < k < n and this contradiction
shows that (4) or (6) must be a strict inequality.

Adding (4) and (6) gives

E n+1l(n—1\" n—-1/n+1\" ~
i (A)P =D,(A
Say <t () + i (M) = md

and so A cannot solve L.

We will show next that case (ii) is impossible. Let I = {i1,42...,i(,+1)/2} be a subindex corre-
sponding to the smallest (n + 1)/2 elements of {d;}* ,. For any index j ¢ I it follows that d;(A4) >
maX;er dz (A)

Let

1, ifiel,
Ai = -
0, ifi¢l.

Then

S =Y d > ™)
i=1

i€l
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by assumption. Let d* = max;ecs d;. We claim that d* > (n + 1)/2. Suppose to the contrary that
d* < (n+1)/2, or in other words (since d; are integer), d* < (n — 1)/2. Since I consists of (n + 1)/2
elements,

n+l n?-1
4 <a < :
R

contradicting (7).
Consequently, Y-, d; > (n —1)d*/2 > (n? — 1)/2. Thus,

n 2_1 2_1 2_1
;di:Zdi+Zdi>n4 +TL4 :TL2

iel igl

and this contradicts Theorem 3.

Thus, we are left with the case (iii) where Y"1 A\id; < (n? —1)/4 for all {\;}}*, satisfying (1)
and (2).

By applying Jensen’s inequality as per (4), we have

- n+1/n-1\"
nd? < 22 .
>ondr <52 (M57) ®

Certainly, if Y"1 | N\id; < (n? —1)/4 for all {\;}7, satisfying (1) and (2), then Y 1 | aud; < (n? —1)/4
for all {o;}?, satisfying 0 < a; < 1and Y., a; = (n—1)/2. We note that > ;_, (1 —X;) = (n—1)/2,
so by applying Jensen’s inequality once more,

n

Z(l —\)d; <

i=1

n?—1

"2 n+1
1—\)d;
:;n—l( ) < 2

n

:>;(1—/\i)df<n;1<n;1>p. (9)

Adding (8) and (9), we see that Y. | d;(4)? < D,(A) and so A cannot solve L,. O

Lemma 5 Suppose that n is even and A solves L,. Then A is an alternating arrangement.

Proof: If n = 2, then all arrangements are equivalent, so we take n > 4. Let A be an arrangement which
is not alternating, so D1(A) < n?/2 by Theorem 3. We claim that

S<on(3)+ (1)

If maxi<j<,d;j <n/2—1,then Y1  d¥ <n(n/2—1)? and the claim follows.
Since Y1 d; < n?/2, it is impossible for minj<;<,d; > n/2. Thus we consider an arrangement
which possesses minj<j<, d; < n/2 —1 and maxi<j<n d;j > n/2. Since all d; are integer, we can write
Z?:l dl S 712/2 — 1.
For such an arrangement we take d, > n/2 and d;, < n/2 — 1 for some 1 < r,s < n. It follows that

for
(n/2-1)—-d

A - 1
dr_ds 6[0) )
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we have
/\dr+(1—>\)ds:g—1
dy+do+--+(1=Nd, +---+Xds + - +d,, < (n—l)g.
Apply Jensen’s inequality on (10) with f(z) = z? to get
(g - 1)p > AP+ (1 — \)dP.

Similarly, using Jensen’s inequality twice on (11) reveals
n\P 1 P
(5) 2 (505 @ +da oo (1= Ny + 2dy) + -+ dy)
2 n—1
1
n—1
1
> —l(df+d’2’+---+(1—A)d£+---+/\d§+---+dg).
n_

(dY +db+ -+ (1= N)dp + Mds)? + -+ +dP)

Combining (12) and (13) yields

(n—1) (g)p+(g—1)p2d’f+d§+---+d£+---+d§+---+dg,

and the claim is confirmed. _
We now verify that D,(A) — D,(A) > 0 (and thus A cannot be the solution to L,). We have

Do =Dy (5-1) (5-1) +2(3) + (5-1) (1)

S () (51)

=277 ((n = 2)((n +2)" = nP) = (n - 4)(n” — (n - 2)")).

241

(14)

For f(x) = 2P, 0 < p < 1, one can easily check that f”(x) is negative and increasing on (0, 00).

Thus, for any interval [a,a + ¢] C (0, c0),
f'la+8) = f'(a) for0<¢<ec

Integrating this with respect to £ over an interval [0, h] yields

f'la+h)— f'(a) > f"(a)h for 0 <h<e.
Integrating once more with respect to h over the interval [0, ],

flat o)~ fa) - f'(a)e > 3 f"(a).

Substituting @ = n and ¢ = 2, it follows that

(n 4 2)P > nP 4+ 2pnP~ + 2p(p — 1)nP 2,
Similarly, over an interval [a — ¢, a] C (0, 00),

ffla—c+& > f"(a—c) for0<E<e.

Integrating with respect to & over [h, ¢] and then with respect to h over [0, ¢] gives

F(@)e ~ f(@) + fla—c) > (0~ o)
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Substituting a = n and ¢ = 2, it follows that
(n—2)? >n? —2pnP~' 4+ 2p(p — 1)(n — 2)P~2
Substituting (15) and (16) into (14) gives

Dy(A) — Dy(A) > 27771 (n — 2) (2pnP ™ + 2p(p — 1)nP~2)

— (n—4) (200" = 2p(p — 1)(n — 2)"2))

(16)

)
=27"p (20" + (p—1) (n—2)n" > + (n — 4)(n — 2)*?))
—(

>27P (2np !
> 27Pp (P! — (n —4)(n —2)P7?)

=2 Ppn(n—2)P 2 ((1 - %>2p - (1 - %))
> 2 Ppn(n —2)P 2 ((1 - %)2 - (1 - %))
=2"Ppn(n — 2)‘”‘2% > 0.

Thus if A is not alternating, then D,(A) < D,(A) and A cannot solve L,. O

Lemma 6 If A is equivalent to an arrangement w, T, a1,a2, ..., Gk, Y, 2, Gt 1, - - -

then D,(A) < D,(A).

n—2)nP~? — (n —4)(n — 2)P7?)

wherew < z <y <,

Proof : Transform the original arrangement A to A’ by reversing the string between the brackets:

A:w>[maalaa%"'>ak;y])zyak+1)"')

A'=w,[y,ak,...,a2,a1,%], 2, A 11, - - -
The calculations for the penalty functions take the form:

Dy(A) =A+(z-w)’+(y—2)
Dy(A)=A+ (y—w)? + (z — 2)?

where A is precisely the same in both sums. Letting

)\:ie(o,l)
r—y+z—w

we see that

Summing we see that (y — w)? + (z — 2)? > (y — 2)? + (x —w)? and so Dp(A4) <

solve L,. O

D,(A’) and A cannot
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Lemma 7 Suppose that n is even and that A is an alternating arrangement. Suppose that d;(A) ¢
{n/2—-1,n/2,n/2+ 1} for some 1 <i <n. Then D,(A) < D,(A).

Proof : Suppose that max; d;(A) > n/2+2. The case min; d; < n/2—2 follows in a symmetrical manner.
Let A contain adjacent elements s and [ where [ — s = max; d;. Then A is equivalent to an arrangement,
with a1 = s and ay = [. The right neighbours in A of each element of Z = {n/2+1,n/2+2,...,1 -1}
cannot lie in ¥ = {s+ 1,5+ 2,...,n/2}. Otherwise A can be written s,l,as,a4,...,c,b,... where
ce€Zand beY with s <b< e <l It follows by Lemma 6 that D,(A4) < Dp(g). Consequently, the
right neighbours of Z must lie in X = {1,2,...,s}. But comparing cardinalities, |X| < |Z] yielding a
contradiction. O

Lemma 8 Suppose that n is even, A is alternating and d;(A) € {n/2 — 1,n/2,n/2 + 1} for every
1 <i<mn. It follows that A = A.

Proof: The proof uses induction. We start with a subarrangement and at each step, we add a left
neighbour and a right neighbour to build up A. Initially, the subarrangement Ag consists of only the
element 1. At the first step, to maintain an alternating arrangement and with the restrictions on d;(A),
we note the neighbours of 1 must be n/2 + 1 and n/2 + 2, creating the subarrangement A; = n/2 +
1,n/2+2.
At step £ < n/2—1, we claim that for k even,

n n n n n
A = ——1,k-2 ——3,...,=+1L1,—4+2,....k—1 — 1 1
k k,k+2 Kk ,k+2 3, ,2+ , ,2+ ook ,k+2,k+ , (17)

while for £ odd,

n n n n n n
Ay = — k-1 ——2k=3,...,=+1,1,=-+2,....k—2 ——1 —+ 1. 1
k k+2,k ,k+2 Jk—3, ,2+ , ,2+ ook ,k+2 ,k,k+2+ (18)

At step k + 1, we add an element to each end of Ay.

If k£ is even then the neighbours of k must come from {k +n/2 -1,k +n/2,k+n/2+ 1}. From the
inductive hypothesis, the right neighbour of k is k + n/2 — 1. The left neighbour cannot be k + n/2,
since this already has two neighbours distinct from k in the subarrangement. Hence the left neighbour
of k must be k +n/2+ 1. At the right end of Ay, the neighbours of k 4+ 1 must come from {k +n/2,k+
n/2+ 1,k +n/2+ 2}. From the inductive hypothesis, the left neighbour of k£ + 1 is k + n/2. The right
neighbour of k£ + 1 cannot be k + n/2 + 1 because this has just been added to the left of Aj. Thus,

n n n
A=kt g+ Lk kg —Lk=2k+35-3... 2+LL2+2 N k+1k+2+2

corresponding with the form (18).

If k is odd, then the left neighbour of k + n/2 must come from {k — 1,k, k + 1}. From the inductive
hypothesis, both k£ — 1 and k are already contained in Aj and hence the left neighbour of k£ + n/2 must
be k 4+ 1. The right neighbour of k + n/2 + 1 must come from {k,k + 1,k + 2}. However, k is already
contained in Ay and k + 1 is the left neighbour of k + n/2. Consequently

A =k Lkt o b1kt —2k—3,. . 1, L, 2 k=2 k2 Lk k1, k42
2 2 2 2 2 2
corresponding with the form (17).
To conclude the construction, when k = n/2 the final element is inserted to form 4, ,, = A. O

We are now in a position to complete the proof of the main result.

Case of n odd: By Lemma 4, each element of A can be uniquely identified with two neighbours. The
two neighbours of 1 < j < (n —1)/2 must be j + (n —1)/2 and j + (n + 1)/2. The two neighbours
of (n+1)/2 must be 1 and n. The two neighbours of (n +3)/2 < j < n must be j — (n — 1)/2 and
j— (n+1)/2. This yields A=A

Case of n even: By Lemma 5, A is alternating. By Lemma 7, d;(4) € {n/2 —1,n/2, n/2+ 1} for
each 1 < i <n. By Lemma §, A is the only arrangement which has these properties and so A=A4. O
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4 Further remarks

(1) We note that the sum can easily be evaluated:

n n P n\P n n P
(3-0)G-1 +2(3) +G-1 G+, neve
n—1/n+1\" n+1/n-1\"
2<2>+2<2>, n odd.
For a dartboard with 20 sectors, the optimal permutation is A= 1, 11, 2, 13, 4, 15, 6, 17, 8, 19, 10,
20, 9, 18, 7, 16, 5, 14, 3, 12. This gives D;/3(A) ~ 63.174, compared with the penalty for the actual
dartboard arrangement, Dl/g(Adm«tbom«d) ~ 60.569.
The arrangement is alternating, which means that it solves L; and interlaces “small” numbers from

{1,2,...,10} with “large” numbers from {11,12,...,20}. However, a drawback can be immediately
observed as the cluster 19, 10, 20, 9, 18 creates an attractive target for high scores.

Dp(g) =

(2) We remark that this approach is not valid for permutations of arbitrary distinct numbers (not
necessarily consecutive integers) and a counterexample for Theorem 2 in that case is readily available.
For example, suppose that A is the set of permutations of {1,2.5,3,3.1,5,6}. Then the solution to
problem L/, is 1, 3, 5, 2.5, 6, 3.1. This differs from the ordering in Theorem 2 which implies the
permutation 1, 3.1, 2.5, 6, 3, 5.
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Abstract

A diver is submitted to kinematic and dynamic laws for his or her movements in water: gravity,
water drag force, buoyancy of Archimedes, perfect-gas law are the essential physical elements which
contribute to the diver’s kinematics.

The diver’s safety depends on the dynamics of dissolved nitrogen in blood: Dalton’s law coupled
with linear dynamics provide the so-called Haldane model of compartments for dissolved nitrogen in
blood. More recent and accurate models exist among which the famous Reduced Gradient Bubble
Model. The diver’s safety depends on the realism of such models: indeed, they are coded in tables or
in wrist computers which inform the diver and prescribe diving profiles (stops and ascents) during
the dive.

We present here the basic elements to build diver models which combine both types of physics.
The diver state consists of position (depth), impulse, mass, air-jacket mass and dissolved nitrogen in
compartments. The diver has control variables to modify his or her state: palming, jacket filling and
unfilling. The state follows a controlled ordinary differential equation. Controls belong to bounded
sets and linear combinations of the state must satisfy given inequalities for safety and physical
reasons.

Such controlled ordinary differential equation with constraints models allow us to formulate
various control problems:

e stabilisation at given depth;

e ascent at fixed speed;

e maximum sojourn time at given depth;
e minimum upward time.

At this stage, we can present the building of the model, suggest control problems and give some
hints as to their resolution.

*This paper is accepted for presentation but was received too late to be submitted to the full refereeing process.
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